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Abstract

We prove that the total chromatic number of any graph with max-
imum degree A is at most A plus an absolute constant. In particular,
we show that for A sufficiently large, the total chromatic number of
such a graph is at most A 4 102, The proof is probabilistic.

1 Introduction

A total colouring of a graph G is an assignment of colours to its vertices and
edges so that no two adjacent vertices have the same colour, no two adjacent
edges have the same colour, and no edge has the same colour as one of its
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endpoints. The total chromatic number, x"(G) is the least number of colours
required for a total colouring of G.

This concept was introduced independently by Behzad [5] and Vizing [22],
who each conjectured that any simple graph with maximum degree A has
a A + 2 total colouring. Note that if true, this conjecture is tight as every
such graph requires at least A 4+ 1 colours and there are some graphs such
as Kat1, A odd, which require A + 2 colours. Kilakos and Reed [15] have
shown that the fractional total chromatic number is at most A+ 2. For more
information on total colouring, see the recent book by Yap [23].

The first A +0(A) bound on the total chromatic number of such a graph
was A+2v/A, due to Hind [11]. More recently, Haggkvist and Chetwynd[10]
have improved this bound to A + 18A'Y3log(3A). In [13], Hind, Molloy and
Reed improve this bound further to A+ poly(log A). Brualdi [6] and Alon [1]
asked whether the total chromatic number of such graphs is at most A 4+ C
for some absolute constant C'. Here, we answer this question positively:

Theorem 1.1 If a simple graph G has mazimum degree A at least as large
as a particular constant, then X" (G) < A + C, where C' = 1026,

Remark 1.2 We do not attempt to optimize our constant ', prefering
rather to choose a value which provides a simpler presentation. In fact,
by adding a few more intricacies to our proof, and being a little more careful
in our calculations, we can obtain ' = 500, and this technique will probably
yield C' near 100. However, it does not appear that this technique will yield
a value of €' which is very close to 2, say less than 10.

We make no attempt to find the neccessary lower bound on A, only
insisting that A satisfies various implicit conditions. Note that, using for
example the aforementioned result of Hind, Theorem 1 implies the existence
of a constant €, such that for any A and any G with maximum degree A,
(G <A+C.

Our proof relies heavily on several applications of the Lovasz Local Lemma.
If A does not grow too quickly with n, say A = 0(10g1/3 n) (for example if A
is fixed) then the technique of Beck[4] can be applied to make the argument
constructive, providing a polytime algorithm to find a A + C' total colouring
of our graph. See [19] or [20] for details.

In [13], we show that if we begin with any A + 1 vertex colouring of G,
satisfying a particular condition (where the existance of such a colouring is
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guaranteed in [12]), then we can always complete this colouring to a total
colouring of GG using at most A 4 poly(log A) colours. Here, we take the
opposite approach. We show that if we begin with any A 4 1 edge colouring
of GG, then we can essentially complete it to a total colouring of GG using
at most A + ' colours. By “essentially”, we mean this: There will be a
subgraph, R C G called a reject graph, such that upon deleting the colours
on the edges of R, we have a partial total colouring of GG, using A+1 colours,
where only the edges of R are uncoloured. Furthermore, we will guarantee
that R has maximum degree at most ' — 2, and so by Vizing’s Theorem, we
can edge-colour R using ' — 1 new colours, thus obtaining our A 4+ ' total
colouring.

In [18], we show that for any simple graph G with maximum degree A, if
the neighbourhood of each vertex of ¢ has at most (1 —¢) (é) edges for some
€ > 0, then x(G) < (1 —d)A, for some § = d(¢) > 0. Reed [21] extends this
result to show that if the size of the largest clique in G is at most (1 — €)A
then \(G) < (1 —4&")A, for some linear function §' = §'(¢) > 0, where §' can
be taken to be £ for ¢ sufficiently small. The techniques used in this paper,
are similar to those introduced in [21].

If the neighbourhood of each vertex of G had at most (1 — ¢) (?) edges,
then we would be able to complete our total colouring of G in a manner
similar to that in [18]. Of course, this is not always the case. However, we
can make use of a partition, introduced in [21], of V() into Sy,...,S:, H,
such that each vertex of H, has at most (1—e¢) (?) edges in its neighbourhood,
and for each 7, the number of edges across the cut (5;, G — ;) is small.

We will generate our vertex colourings in a random fashion. Several times
in this paper, we will make use of the following tools of the Probabilistic

Method.

The Local Lemma [8] Suppose A = Ay,..., A, is a list of random
events such that for each i, Pr(A;) < p and A; is mutually independent of
all but at most d other events in A. If ep(d +1) < 1 then Pr(A; A;) > 0.

The Chernoff Bound Suppose BIN(n,p) is the sum of n independent
Bernoulli variables each occuring with probability p. Then for any 0 < a <
tnp: 2

Pr(|BIN(n,p) — np| > a) < 2™ /3",



Remark 1.3 There are stronger versions of the Chernoff Bound (see eg. [2]),
but this one is strong enough for our purposes. To deal with the case a > énp

it will suffice to use Pr((|BIN(n,p) — np| > a) < Pr(|BIN(n,p) — np| >

tnp) < Pl

Azuma’s Inequality [3] Let 0 = X,,..., X, be a martingale with
| X1 — X3 |1
for all0 < i< n. Let A >0 be arbitrary. Then
Pr| X, |> A/n] < e N/2,

This yields the following very useful standard corollary.

Corollary Let Y = Y1,Y5,....Y, be a sequence of random events. Let
FY) = f(Y1,Ys,...,Y,) be a random variable defined by these Y;. If for each
ma | Bxp(£(Y) | Vi, Vs.. .. Vier) — Exp(f(Y) | Vi, Ya, .. Vi) < 6

then the probability that | f — Exp(f) |> t is at most:

—42
9 -
P (22@2)

For more details on this corollary and an excellent discussion of Martin-
gale arguments see either [16] or [2].

Remark 1.4 We often apply this corollary to show concentration of vari-
ables which are functions of random permutations. Typically, these appli-
cations have the following flavour. Suppose Z is a function of a random
permutation ¢ : W — U, where W = {wy, ...,w,}. We choose our permuta-
tion by selecting for each w; in turn, a random member of U from amongst
those not previously selected. We let the event Y, denote this choice, and note
that if for all j > ¢, the maximum effect on Z of swapping the values of ¢(w;)
and ¢(w;) is at most ¢;, then max | Exp(f(Y) | Y1,Y2,... Y1) —Exp(f(Y) |
Y1, Y2, ... Y)) |< ¢, and so Azuma’s Inequality applies.
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Many times throughout the paper, we need to simplify expressions involv-

k) The following inequality, which is easily verified

(n) (en)k
<[—) .
k] — \k

If A, B are disjoint subsets of the vertices of a graph G, we denote by
FEc(A, B) or E(A, B) the set of edges of ¢ with one endpoint in each of
A, B. We denote by G the complement of a graph (7, and for any subgraph
H C G, we denote by S the complement of H. If S is a subset of the vertex
set of G, then when no confusion is possible we sometimes abuse notation
and use “S” to also refer to the subgraph induced by S. Thus S refers to
the complement of the subgraph induced by S. For any vertex v, N(v) is
the neighbourhood of v and for each S C V((), degs(v) = N(v) N S. If for
each w in a ground set W, we have a set F'(w) C U, then for each u € U, we
denote by F~!(u) the set {w € W :u € F(w)}.

Throughout the paper, we assume G to be A-regular, since it is straight-
forward to show that any graph with maximum degree A is a subgraph of
a A-regular graph (see for example [21]). We only claim statements to be
valid for sufficiently large A. We often use the notation #(X) to mean an
expression which is asymptotic to zX where z is some implicit positive con-
stant. In general, for the sake of presentation, we omit || and [] signs. All

ing terms of the form
will be very useful:

logarithms have base 2.
Throughout this paper, we introduce several new terms. For the aid of
the reader, we provide an index at the end of the paper.

2 Isolating the Trouble-makers.

In this section we partition the vertices of GG into Sy, ..., Sy, H, such that (a)
each vertex of H, has relatively few edges in its neighbourhood, (b) each S;
is very nearly a clique, and (c) for each 7, the number of edges across the cut
(Si;, G — S;) is small. This partition was introduced in [21]. We include the
details here for completeness.



2.1 Dense Sets

We set ¢ = 107%, and we call a vertex x € V(G) dense if |E(N(x))| >
(1 —¢) (?) Otherwise x is sparse.

Given a dense vertex x, we can recursively define a (unique) set S, C

V(G) as follows. Initially set S, = N(x) U {x}, and then

1. delete from S, any vertex y € S, with |[N(y) N S;| < %, until no such
y remains, and then

2. add to S, any vertex y ¢ S, with |N(y) N S,| > 22, until no such y
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remains.

It is not hard to verify (see [21]) that S, is uniquely defined, i.e. that
it does not depend on the order in which vertices are deleted or added, and
that for any v € S, or u & Sy, [N(v) NS, > 22 and |N(u) N S,| < 22.

We refer to S, as a dense set. The following basic facts about the structure
of S, will prove to be useful:

Lemma 2.1 (a) |[N(2)— S, < 5eA and |S; — N(z)| < 2eA,
(b) A —BeA < |5, <A+ 2eA,
(¢) x € 5,,
(d) |E(G —S,,S;)| < 4eA?, and
(e) |B(T)] < e

Proof Suppose N(x)—S,; = {uy,...,us} where the vertices are listed
in the order that they are removed from 5. Then degy,(u;) < % +(i—1),

and so since |E(N(x))| > (?) — £A? we have that (22 — 5(52—_1)) < £AZ
and so s < 5eA. Similarly, if S, — N(2) = {vy,...,v:} where the vertices are

listed in the order that they are added to S,, then degy(,)(vi) > % —(i—1),

and so %(% — 75(752;1)) < £A? yielding ¢ < 2¢A (in fact ¢ < 1.5¢A) and thus

proving (a).

(b) and (c¢) are merely trivial corollaries of (a), but worth stating, never-
theless.

Since z is dense, |E(G — N(z),N(z))| < eA?. Every time a vertex is

removed from 5,, it increases the number of edges across this cut by at most



%. Each time a vertex is added to .S, it decreases the number of edges across
this cut, and so (d) follows from (a).

(e) follows by noting that |E(S;)| < [E(N(x))| + (;) + 2 and recalling
that we have shown ¢ < 1.5€A. O

As we will now see, we can partition V() into a sequence of dense sets,
and a sparse set containing no dense vertices, such that there are very few
edges between sets.

Lemma 2.2 Let G be any A-regular graph. We can partition V(G) into
H,51,5;,...,5 such that

(a) for each 1 <1 </, S; =15, for some dense vertex x, and

(b) for each dense vertex x, x € S; for some 1.

Proof To prove (a) and (b), it is enough to show that if x,y are
both dense, then either S, NS, =@ or y € S, (and so by symmetry x € S,).
Suppose the contrary, i.e. y ¢ S, and S, N S, # @, and consider any a €
Sy NS,

From Lemma 2.1(a), the size of the symmetric difference of S, and N(x)
is at most 7eA. Thus, a sees at least % — TeA vertices of N(x), and also of
N(y). Therefore |[N(z) N N(y)| > 5 — 14eA > 2.

Also, IN(2)NN(y)| < %—I—%A, since y ¢ Sy, and so |[N(x)— N(y)| > %.

Therefore, if there are at least 2—; edges from N(x)NN(y) to N(z)— N(y)

then x is not a dense vertex, and if there are at most 2—; such edges, then y
is not a dense vertex, yielding a contradiction. a

We refer to an edge (v, u), with v € S;, u ¢ S; as an external edge of S;
from v, and we refer to an edge of F(S;,5;) as a internal edge of S;. For each
v € 5;, we define the external neighbours and the internal neighbours of v to
be those vertices which are joined to v by external edges and internal edges,
respectively.

For each vertex v in a dense set 5;, we define Qut, to be the set of external
neighbours of v, i.e. the neighbours of v outside of S;. Note that |Out,| < %
by the construction of 5;.



Now we will partition each S; into A + 1 colour classes. We will not
assign colours to them until later. As each S; is very dense, most of the
colour classes will have size 1. Unless 5; is a clique, a few will have size 2.
None will have size larger than 2.

Lemma 2.3 For cach 1 <1 < {, we can find a matching M; in S; such that
either

(a) M; is a maximum matching and |M;| < 10eA, or
(5) 1M = 106,

and, in either case, there is no edge vy of M; with both |[N(x) N S;| and
|IN(y) N S;| less than A — 4\/eA.

Proof Let A={v e S :|Nwv)nS|<A-4yeA}. By Lemma 2.1,
|A] < /€A, and each v € A has degree at least 4,/cA — 5¢A > 3\/cA in S,.

Consider a maximum matching M’ of S;. If |[M'| < 10eA then setting
M; = M’ satisfies our requirements, for otherwise there exists an edge 2y €
M' with z,y € A. x,y each must have at least 31/¢A —20cA > 2 neighbours
in S; not covered by M which contradicts its maximality.

If [IM'| > 10eA and M’ does not contain at least 10eA edges, none of

which have both endpoints in A, then |M'| < 10eA + ('g") < 11eA. Further-

more, M must contain an edge zy with =,y € A. Again, 2,y each must have
at least 3\/eA —22¢A > 2 neighbours in S; not covered by M', contradicting
its maximality. Therefore, M must have at least 10eA edges, none of which
have both endpoints in A, and so we can take M; to be 10eA of those edges.

O

We define the colour classes C; of S; to be the set of all pairs of vertices
which form an edge in M; along with the set of all vertices not covered by M,.
Thus, S; has |S;| — | M;| colour classes. It will be convenient to occasionally
also refer to each vertex of H as a colour class of size 1.

It is important to note the following:

Fact: Each colour class of a dense set has at most (i + 4\/E)A external
neighbours.



Proof This follows easily from Lemma 2.3(b) and the fact that no

vertex in a dense set has more than % external neighbours. O

Lemma 2.4 For each i, A — 15e¢A <|C;)| < A+ 1.

Proof That |C;] > A —15€¢A is a simple corollary of Lemmas 2.1 and
2.3 since |C;| = |Si| — | M;].

If |C;| > A+1 then since |C;| = |5;| — | M|, we have |M;| < |S;|—(A+1) <
10eA, and so M; is a maximum matching. Consider the Tutte reduction of
S;, i.e. a partition of S; into sets X, Uy, Uy, ..., U;, where | X| < |M;]|, each U;
is a component of S; — X, and at least |.S;| — 2| M;| +|X| of these components
are odd (see eg. [17]).

Because |M;| < £|5;], there is at least one U; of size 1. In S;, the vertex

in this component is adjacent to every other vertex in S; — X, and so |S;| —
|X| < A+ 1. But |X| < |M;| and so this contradicts the assumption that
|CZ|: |SZ|—|MZ| > A+ 1. O

2.2 Ornery Sets

If |C;| > A —log* A, then we say that S; is ornery. For each ornery set S;, we
define the kernel, K; of S; to be the set of vertices in 5; with at most 10g6 A
neighbours in G — 5.

Lemma 2.5 For each ornery S;,

(a) 1S;] < A+4log” A,
(b) |S; — K;| < log” A, and
(C) |E(SZ, G — SZ)| < A10g7A.
Proof If S; is ornery, then |S;| — |M;| = |C;] > A — log* A, so by
Lemma 2.1(a) we have |M;| < 3eA, and so M; is a maximum matching. As

in the proof of Lemma 2.4, we consider the Tutte reduction of S;. Note that
U
M) = X+ ey 151,



Since S; is ornery, |Si| — |[M;| > A — log* A. As before, there is at
least one U; of size 1 and so again we have |5;| — |X| < A+ 1. Also,
|S;| — |M;i| = |5 — | X]| — L'Uu Therefore, 3, L J <log* A+ 1 and so
Sy [51] < 2log! A+2

Furthermore, A —log" A < |G| < &, ['U W. Therefore the number of
singleton components of S; — X is at least A —3log* A —2 > A — 4log* A,
Thus, by the construction of S;, each member of X must be adjacent to at
least 2 5 of these singleton components, and so at least one of them is adjacent
to at least 2 of X. Therefore, its degree is at least A — 4log* A + 2|1X|, and
so | X| < 6log” A.

(a) now follows from the fact that the vertex in any singleton component
has degree at least |S; — X| — 1 in G, since it is adjacent to every vertex in
a different component C;.

(b) follows from the fact that each member of S; — X has degree at least
A —log* A within S;, and so S; — X C K;. (c) is a straightforward corollary
of (b). O

For each ornery 95, we define Quverused; to be the set of colours which
appear on at least A — 10A edges of F(S;,G — 5;). When we eventually
colour the vertices of 5;, we will not use any colours from Overused;. In order
to be able to do this, we need the following lemma.

Lemma 2.6 For any ornery S;, |C;| < A — Overused; + 1.

Proof Again, we consider the Tutte reduction of S;. Recall from the
previous proof that there are at least A — 4log* A components C; of size 1.
Every colour in Overused' must appear on an edge of £(S;, G —5;) incident
to at least A — glo 5~ — (5] = (A — 4log* A)) of these components, and by

Lemma 2.5(a) this number is at least A — ﬁ‘

2.5(c), |Overused;| < 2log” A, and so the number of these components for
which at least one colour in Overused does not appear on an external edge
from that component is at most Tioe A = X 2log” A < A—4log* A. Therefore,
there is at least one singleton Component which is incident to an external edge
coloured with each colour in Overused;. Since the vertex of that component
is also adjacent to every other vertex in S; — X, we have A > |5;| — | X| +
1 + Overused;, and the lemma follows from the fact that |X| < |M;| and

Furthermore, by Lemma
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Ci| = |Si| — [M;]. O

Corollary 2.7 For any ornery set S;,|Overused;| < log* A + 1.

Proof This follows from Lemma 2.6 and the fact that if S; is ornery
then |C;] > A —log* A. 0

2.3 Modifications to GG

When colouring an ornery set S;, colours which appear on Out, for too many
values of v will cause difficulties. In order to prevent such difficulties, we will
make some modifications to G.

For each ornery set S;, we define Big;i = {v & S; : [N(v) N S;| > AT/8}.

Modification 1: We add edges to make each Big, a near clique. That is,
for any pair of non-adjacent vertices x,y € Big,, not both in the same dense
set, we add the edge (x,y). This will ensure that no colour can appear on two
vertices in Big,, and so if a colour appears on Out, for several (say greater

than %) vertices v € 5;, then that colour must appear on many vertices in

G — SZ — Bigi.

A similar problem arises if a colour appears on too many edges out of .5;
in the initial edge-colouring.

For each ornery S;, we define Moderate; to be the set of colours which
appear on at least A/log A and at most A — A/log' A external edges of S;.

Modification 2: We prevent each Big, from receiving any colours in
Moderate;. That is, for each colour ¢ € Moderate;, we add a new vertex to
(7, and add edges from it to every vertex in Big;. We colour this vertex with
colour c.

Through a slight abuse of notation, we continue to refer to the modified
graph as G. We refer to the new edges and vertices as artificial. These
modifications will be most important in Section 6.1. At the beginning of
Section 6.2 all artificial vertices and edges are removed, and G is returned to
its original state.

These modifications may alarm the reader, as they cause the maximum
degree of (¢ to increase. However, this will not pose a problem. For one thing,
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the artificial edges will not be coloured in our total colouring. Furthermore,
the degrees of the vertices increase just slightly, so little in fact, that we will
still be able to find a suitable A + 1 colouring of (G. Also every vertex which
was originally sparse will still be nearly sparse.

Lemma 2.8 (a) for each v € G, deg(v) < A +VA;
(b) for each v in a dense set S;, |Out,| < % +VA;
(¢c) for each v & S;, [N(v)NS;| < % +VA;

(d) for each colour class X € S;, the number of external edges from
X s at most %;

(e) for each dense set S;, the number of external edges from S; is at
most 5eA?;

(f) for each ornery S;, the number of external edges from S; is at most
Alog” A + VA;

(9) for each ornery S;, and each v € K;, |Out,| < log® A;

(h) for each ornery S, and each v ¢ Big;, |[N(v) N S;| < A8 4 V/A;

(i) for each sparse vertex v, |E(N(v))| < (1 — %)(A)

2

Proof

(a) By Lemma 2.5(c), for each i, |Big;| < AY®log” A. Furthermore, v lies
in at most A!/® different Big,’s. Thus the number of artifical edges incident
to v is at most A*log” A < VA.

(b)-(f), (h),(i) follow in a similar manner. (g) follows from the fact that
if v € K; then |Out,| < log® A before the modifications, so v ¢ Big; for any
J, and so there are no artificial edges incident to v. a

2.4 The Neighbourhoods of the Sparse Vertices

Recall that since H = V(G) — U, S;, every vertex in [ is sparse. There
may also be sparse vertices in the dense sets. Define H' = {v € V(G)—H :
|Out,| > 75 A}. Note that every vertex in H' is sparse, as by Lemma 2.8(e)
there are at least |Out, | x %—&Az > eA? missing edges between the internal

neighbours and the external neighbours of v.
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We say that two vertices are strongly non-adjacent if there are no edges
between their colour classes, and if they do not both lie in the same dense set.
Thus two vertices are eligible to receive the same colour if they are strongly
non-adjacent. When we colour (&, we will try to use several colours twice in
the neighbourhood of any v € H U H', and so we need to show that each
such vertex has several pairs of strongly non-adjacent neighbours.

Lemma 2.9 For anyv € HU H', N(v) has at least A% pairs of strongly
non-adjacent neighbours.

Proof
Case 1: ve H'.

v has at least % internal neighbours and -

ot A external neighbours. Every
external edge from 5; causes at most 4 pairs consisting of one internal and
one external neighbour to not be strongly non-adjacent. Thus, by Lemma
2.8(e), the number of such strongly non-adjacent pairs is at least %(10_4A)—
20eA? > eA?.

Case 2: v € H.

Let w; = [N(v) N S;|, and W = Yf_, w;. By Lemma 2.8(i), there are at
least iAQ pairs of non-adjacent vertices in N(v). If at least §A2 of them lie
entirely within H, then we are done. Otherwise, by Lemma 2.8(a), we must
have (A + VA)W > £A% and so W > SA.

If for any 7, w; > /¢, then as in Case 1, we have at least (% —20€)A? >
¢A? strongly non-adjacent pairs.

If w; < /€A for all ¢, then by Lemma 2.8(d), each v € S; is strongly
non-adjacent to at least A — w; — 2(%) > % vertices of N(v) — S;, and so
N(v) has at least %W X % > S A? pairs of strongly nonadjacent vertices. O

3 Colouring the Vertices - An Overview

Recall that we begin with an arbitrary proper A + 1 edge colouring of G,
and our goal is to show that there exists a proper A 4+ 1 vertex colouring of
GG which does not conflict with the edge colouring too much.

Given the union of a proper edge colouring and a proper vertex colouring
of G (where the two proper colourings possibly conflict with each other), we
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define the reject edges of GG to be the set of edges which have the same colour
as one of their endpoints. For any vertex v € V((), we define the reject
degree of v to be the number of reject edges incident to v, not counting the
(at most one) such edge with the same colour as v. We define the reject
graph to be the subgraph of (G induced by the reject edges. Note that for
any vertex v, the degree of v in the reject graph is at most the reject degree
of v plus 1.

We will show that given any proper A + 1 edge colouring, we can find a
proper A 41 vertex colouring such that the maximum reject degree is ' — 3.
Thus, we will be able to recolour the edges in R using ' — 1 new colours,
providing a A + C total colouring of G.

We will find our vertex colouring using a random colouring procedure. We
will prove, using various tools of the probabilistic method, that with positive
probability our procedure succeeds in finding a satisfactory colouring. Our
procedure consists of four main phases:

Phase 1: An Initial Colouring.

We assign an initial random colour to nearly every vertex. To do this,
we assign to each vertex in H a uniformly random colour, and we assign a
random permutation of colours to the colour classes of each dense set.

There will almost certainly be some conflicts. We resolve some of them
by uncolouring a vertex in H if it has a neighbour of the same colour. All
remaining conflicts are between vertices in different dense sets. We consider
these vertices to be only temporarily coloured, and we will recolour them
during Phase 3.

We also uncolour vertices if they cause the reject degree of a neighbour
to grow too high.

Phase 2: Finishing the Dense Sets.

We randomly colour all the vertices in dense sets which did not retain a
colour in the first round. We ensure that the reject degree within the dense
sets does not grow too high.

If a vertex receives the same colour as one of its external neighbours or
one of its external edges, then we consider it to be temporarily coloured, and
we will recolour it during Phase 3. Note that this prevents the appearance
of any external reject edges.

Phase 3: Recolouring the Temporarily Coloured Vertices.

We recolour all the temporarily coloured vertices other than those in H'.
We divide them into three groups:
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A) The kernels of the ornery sets.

These require the most work. We will show that there are very few such
vertices to be recoloured, and that we will be able to swap the colour of each
such vertex with another vertex in the dense set. These other vertices will
always be available because of the very small number of external edges from
an ornery set.

B) Vertices in non-ornery dense sets with external degree at most log” A.

We will ensure that there are at most 50log® A such temporarily coloured
vertices in any dense set. Since any non-ornery dense set has at most A —
log* A colour classes, we will be able to recolour these vertices using the
log* A colours not yet used on that dense set.

C) Vertices with external degree between log” A and EFA

We will see that each such vertex has enough colours appearing twice in
its neighbourhood that we will be able to colour them in a greedy manner,
always preventing the reject degrees from growing too high.

Phase 4: Finishing the Sparse Vertices.

At this point, all that remains is to colour the vertices of H which did not
retain their colours in Phase 1, and the temporarily coloured vertices of H'.
We will show that each of these vertices has at least §(A) repeated colours
in its neighbourhood, and this will allow us to colour them all while keeping
the reject degrees low.

During Phase 7, we keep the reject degree of any vertex from increasing
by more than C;, 1 = 1,....4. Again, we make no attempt to optimize each
C;. Tt suffices to take C; = 4000, Cy = 1700, C5 = 2000, and Cy = 10%, and
so when the vertex colouring is completed, the reject degree of each vertex
will be at most C; + Cy 4+ Cs + C4 < C' — 3 where €' = 10%.

In the following sections, we will elaborate on each of these phases, and
prove that they can each be successfully completed.

4 Phase 1: An Initial Colouring.

In this phase we assign a random colour to each vertex of ¢, and then
uncolour some of the vertices when either conflicts occur or the reject degree
is too high. In order to facilitate Phase 2, we choose a small random subset of
the vertices in each dense set which we will not colour during this phase. This
will give us better control over the distribution of the uncoloured vertices at
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the end of the phase.
We obtain our initial colouring through the following procedure:

1. Assign a random colour to most vertices in (G using the following pro-

cedure.

COL:

(a) Assign to each v € H a colour chosen uniformly at random from
{1,...,A+1}.

(b) For each dense set S;, choose a set A; of |C;| colours uniformly
at random from {I,...,A 4+ 1} — Overused; (where we consider

Overused; = () if S; is not ornery). Then take uniformly random
subsets C; C C; and A, C A;, each of size |C;| —~vA, V/vhere Y = z555
and assign a uniformly random permutation of A; to the colour

!
classes C;.

2. If a vertex v € H receives the same colour as one of its neighbours,
then we uncolour v.

3. If a vertex v € (G has reject degree at least ('}, then we uncolour every
vertex w € N(v) such that w received the same colour as the edge

(w,v).

At this point we will have produced a partial colouring such that the
reject degree is at most Cy. This will not neccessarily be a proper colouring
as there may be some vertices in the dense sets, which have the same colour
as a neighbour in another dense set. We correct this as follows:

If a vertex v € 5; retains the same colour as a neighbour in S5;, 7 # 1,
then we consider v to be temporarily coloured. All other vertices in G which
retain their colours are considered to be truly coloured. The colour on a truly
coloured vertex is said to appear truly on that vertex. We define Temp; to be
the set of temporarily coloured vertices of 5;. For each 1 < a < iA + VA,
we define Temp;(a) to be the subset of Temp, with external degrees at most
a.

For each dense set S;, we define W; to be the set of uncoloured (i.e. neither
truly coloured nor temporarily coloured) colour classes of 5;, and U; to be
the unused colours from A;. Note that |W;| = |U;]. In Phase 2, we will match
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the colours of U; to W;. For each v € 5;, we define the potential reject edges
incident to v, PR(v) to be the set of edges between v and W; whose colour
is in U,.

In order for the later stages to be successful, we need the following prop-
erties to hold for our partial colouring:

(P1.1) For each v € HUH', N(v) has at least %A colours which appear
truly twice.

(P1.2) For each v € G — (H U H') such that |Out,| > log® A, the number
of colours that appear truly in both Out, and N(v)NS; exceeds the number
of colours on external edges of v which do not appear truly on N(v) by at
least —L=|Out,|.

(P1.3) For each i and a > log® A, |Temp,(a)| < 2a.

(P1.4) For each ornery S;, and each colour ¢, the number of vertices in 5;
having an external neighbour outside of Big; with colour ¢ is at most A3!/32,

(P1.5) For each i, |Wi| < vA+ A,
(P1.6) For each 4, and each v € S;, |PR(v)| < 3+v*A.
We prove that these properties all hold with positive probability via the

following sequence of lemmas.

Lemma 4.1 Given any list of colour classes C' = Cy,...,Cy, and a corre-
sponding list of colours cq, ..., ¢, the probability that C; receives ¢; for each

i=1,...tis at most (3)".

Proof For each dense set 5}, let {; denote the size of C'NC;, and let
lo =t — 3 ;51 1; denote the number of classes in €' which consist of a single
vertex in H.

The probability that each C; receives ¢; is at most

IR (IC;] = ¢)!
(A+1) xg (et

For any ¢, this product is maximized when each ¢; = |C;| or t; = 0 for all
but at most one value of j = j*. In this case, the product is at most

1oN® (|G| = t;0)! 1 e VR
<A+1) e xjg*a< (1—100)A <(Z)’

since |C;] > A — 10¢A by Lemma 2.3. O
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Next, we will show that with high probability, only a small proportion of
the colour classes get uncoloured because of high reject degrees. Denote by
R the set of classes uncoloured during Step 3 of Phase 1, and denote by R’
the set of vertices with reject degree greater than 'y after Step 1 of Phase
1. For each dense set S;, denote by (); the set of colours which are removed
from RN S; during Step 3.

Lemma 4.2 For any set X of at most 2A colour classes, the probability that
X N R| > 5| X| is at most =215,

Proof Consider any Xy C X, |Xo| = | X]. We will bound the
probability that Xy C R.

If Xy C R, then for each colour class * € Xy, we can choose a particular
ry € R such that x receives the colour appearing on an edge ¢, from z to
rp. If this is the case, then we let Ry = {r.|z € X,}.

We will first determine the probability that Xy C R and |Rp| < | Xo.

There are at most (2A)¥ol choices for the vector (e,),ex,. Clearly, the
number of such vectors which yield |Ry| < | Xo| is maximal when every
v € Ugex,2 has the same neighbourhood, and so this number is at most

( n |)(%|Xo|)|X°|. Thus, by Lemma 4.1, the probability that Xo C R and

1
o5 1 X0

|Ro| < 72| Xo| is at most:

A ( 9 BY |)|Xo| (3)|X0| _ ( 1 )10%|X0|
LI x,[) \100' " A 5 x 1020 ’

100

since | Xo| < A.
Next, we determine the probability that Xy C R and |Ry| > -] Xo|.

100
For each r € Ry, we set d, to be C; minus the number of reject edges

from r to Xy. Note that each © € X can contribute at most 2 such edges,

and so 35 _pr d, > C1| Ry — 2| Xo| > (& —2)|X,|. Each r € R must have at

100
least d, neighbours in G — Xy which contribute a reject edge incident with
d,. Thus, the total number of such edges from G — X, to R must be at least
(&L — 2)|Xo|. Each colour class can contribute at most 2 such edges and so
there must be at least (£ — 1)|Xo| colour classes contributing these edges.

The number of choices for these colour classes, along with the edges they

Alf| ) Thus, by Lemma 4.1 the probability that

C
(555 — D) Xol

there are this many reject edges from G — X, to R} is at most:

contribute, is at most (
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Cq 1

ARy (i)(m—l)lXol B 3e (355 —1)| X0
(& )Xo/ \A 1 /200 — 1 .

200

since |Ry| < | Xo|. Also, as before there are at most (2A)¥¢l choices for the
vector (e, )rex, of reject edges from Xy to Ry. Therefore the probability that
Xo C R and |Ry| > 5| Xo| is at most:

1

3\ 0! 3 (oo~ D)1Xol 1\ Xl
(24)ol (_) o < <7) ‘
A C1/200 — 1 5 % 1020

Therefore, for any choice of Xy, the probability that Xq C R is at most
L X
2 ( L )1020' 0|, and so, setting p = 1/(5 x 10?°), the probability that | X N

5x1020

R| > 55| X| is at most:

x| 5p|X| 50| X|
9 1|X| (#) <2 ﬂ > p5p|X| -9 (S) )
10W|)(| 5 x 1020 5p|X| 5

Lemma 4.3 For any dense set S;, and any set of colours U C {1,...,A},
the probability that U N Q;| > 1o |U| is at most e=?(XD.

Proof For each Xy C Ci, [ Xo| = 155 |U|, we bound the probability
that Xo C R, and Xy receives colours from U. The proof follows along the
same lines as the proof of Lemma 4.2, and we omit the details. a

Now we will prove that with positive probability our colouring satisfies
the desired properties.

Lemma 4.4 With positive probability, the partial colouring produced by Phase
1 satisfies properties (P1.1) - (P1.6).
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Proof We will use the Local Lemma. We define the following events:

Al.1(v) — Defined for each v € H U H', this is the event that fewer than
%A colours appear truly twice in N (v).

A1.2(v) — Defined for each vertex v in G — (H U H') with |Out,| > log® A,
this is the event that the number of colours which appear truly in both Out,
and N(v) N S; does not exceed the number of colours on external edges of v
which do not appear truly in N(v) by at least 55|Out,|.

A1.3(i,a) — Defined for each 1 <7 < £ and log® A < a < A, this is the
event that |Temp,(a)| > 2a.

Al.4(i,¢) — Defined for each i such that S; is ornery and each ¢ €
{1,...., A + 1}, this is the event that the number of vertices in S; having
an external neighbour outside of Big; with colour ¢ is more than A3!/32,

AL.5(1) — Defined for each 1 < ¢ < £, this is the event that |W;| >
~vA 4+ #A.

Al1.6(v) — Defined for each v in any dense set S;, this is the event that
|PR(v)| > 37%A.

We wish to show that with positive probability none of these events hold.

For each vertex v € (7, define N*(v) to be the set of vertices of distance
at most 3 from v, and set D(v) = N*(v) U {S;]S; N N3(v) # (}. For each
dense set S;, set D(S;) = Uyes, D(v). For each appropriate vertex v, Al.1(v)
is independent of the colour assigned to all vertices in ¢ — D(v), and the
analogous bound holds for each of the other events. Thus, for example,
Al.1(v) is independent of A1.3(¢,a) as long as D(v) N D(S;) = 0. It follows
that each event is independent of all but at most A? other events. Thus, to
apply the Local Lemma, it will suffice to show that each event holds with
probability at most A71°,

Pr(Al.1(v)) < A7

To bound the probability of Al.1(v), we define Z; to be the number of
colours which are retained by exactly two vertices in N(v), after Step 2. If
> %A, and fewer than %A > 10120A vertices in N(v) are uncoloured
during Step 3, then Al.1(v) does not hold. Thus, by Lemma 4.2, it is enough
to bound the probability that Z; < %A.

Since v € HUH', by Lemma 2.9, N(v) has at least 5 A? pairs of strongly
non-adjacent vertices x,y. For any particular such pair, denote by X, Y, the
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colour classes containing z,y respectively.

By Lemma 2.4, for each S;, |Ci| > (1 — 15¢ — y)A > (1 — 29)A, and
so x,y both receive a colour in Step 1 with probability at least (1 — 2+v)?.
Also, given that they both receive a colour, they each receive the same colour
with probability at least ﬁ’ since they do not both lie in one dense set.
It is straightforward to verify that the probability that no other vertex in
N(v) U N(X) U N(Y) receives that colour is at least v* (the worst case
occurs when the portion of N(v) U N(X) U N(Y) which is outside of the
dense sets that X and Y belong to lies entirely within 2 other dense sets).

Thus Exp(Z1) > (&)AX(5725) > A,

We now use Azuma’s inequality to show that Z; is concentrated around
its mean. We will use the sort of argument described in Remark 1.4. For
the sake of this proof, we consider choosing the colouring in Step 1 in an
unusual manner. We first assign an initial colouring by applying COL. Next
we recolour the vertices of N(v). In particular, for each € N(v) in turn: if
x € H then we recolour  with a uniformly random colour from {1, ..., A41};
if  is in some dense set 5;, then we choose a uniformly random colour
¢ € {l,...,A + 1} — Overused;, and swap ¢ in S; with the colour that x
was originally assigned. Note that the resulting random colouring is selected
from the same distribution as a colouring selected by a single application of
COL, and so it is valid to generate the colouring in this manner.

For each colour class w € G, wN N(v) = @, define X,, € N(v) to be
the set of vertices in N(v) whose colour class is adjacent to w. Order the
colour classes of each dense set S; starting with those not intersecting N(v) in
nonincreasing order of | X, |, and finishing with those classes which intersect
N(v) ordered arbitrarily. We choose our random permutation in COL by
assigning each class of C; in order a uniformly random colour from amongst
the remaining colours of A..

In order to apply Azuma’s Inequality, we must bound the effect that each
random choice can have on the conditional expected value of Z;. We split
these random choices into 6 categories:

(1) The colour assigned to a vertex w € H, with w ¢ N(v):

The choice of the colour assigned to w affects the conditional expected
value of Z; (conditioned on the choices made thus far) by at most A|X,,|x 35,
as this is the maximum number of strongly nonadjacent pairs in N(v) that w
is adjacent to, multiplied by the probability that both members of this pair
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receive that colour during recolouring.

(2) The colour assigned to a colour class w ¢ H, wN N(v)=0:

Here, w € C; for some dense set S;, and for any other colour class w' € C;
which has not yet been assigned a colour, we have | X /| < |X,|. Therefore,
exchanging the colours on w and w’ will affect at most 2|X,,| strongly adja-
cent pairs within N(v) and so the choice of the colour assigned to w affects
the conditional expected value of Z; by at most 2A|X,,| x 5.

(3) The colour initially assigned to a vertex w € H with w ¢ N(v).

This choice for w affects the conditional expectation of Z; by at most 8.
To see this, consider the effect of changing the initial colour on w. After all
the recolouring is completed, there will be at most two colour classes whose
colours are affected by this exchange. Fach colour can contribute at most 4
to Z; (in the case that two colour classes of size 2 receive that colour), or
subtract at most 4 from Z;.

(4) The colour initially assigned to a colour class w ¢ H with
wN N(v) £ 0.

This choice for w affects the conditional expectation of Z; by at most
16. To see this, consider the effect of exchanging the initial colour on w with
that of some other colour class w’ in the same dense set, and reason as in
the previous case.

(5) The colour with which a vertex w € H with wNN(v) # 0 is recoloured.

It is easy to see that this choice can affect Z; by at most 2.

(6) The colour with which a colour class w ¢ H with wN N(v) # 0 s
recoloured.

This choice w can affect Z; by at most 8, since the new colour which w
receives can add or subtract at most 4 to/from Z;, and similarly for the other
vertex involved in the swap.

Now we must sum the squares of these values. Each © € N(v) lies in X,,
for at most 2A values of w. Thus, 3, |X.| < 2A2, and since | X, | < 2A for

each w, >°, (2A|Xw| X ﬁ)z < 16A. Thus, denoting as usual the maximum
effect of the ith random choice on the conditional expected value of Z; by
¢i, we have Zc? < 16A 4 16A 4+ 4A = 36A where the first term comes
from the choices in categories (1,2), the second term from those in (3,4) and
the final term from those in (5,6). Thus, it follows from Azuma’s Inequality
(see Remark 1.4) that Pr(7; < %A) < e~ %2) Therefore, by Lemma 4.2.
Pr(Al.l(v)) < e~ 0(8) < A1,
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Pr(Al.2(v)) < A~

We bound the probability of A1.2(v) in a similar manner. Let Y, denote
the number of colours which appear truly in both Out, and N(v) N .S;, be-
fore the uncolouring in Step 3. Let Z, denote the number of colours which
appear on external edges from v, and appear truly on N(v) N S;, before the
uncolouring in Step 3. Note that if Y3 + 7> > |Out,|(1 + ﬁ) and fewer
than —=|Out,| vertices in N(v) are uncoloured because of reject degree, then
Al.2(v) does not hold.

Because v ¢ H',|Out,| < <A, and so [N(v) N S| > (1 — 1)A. By

10% 10%
Lemma 2.8(c) and (d), for each « € Out,, the colour class x lies in has at
most %A + VA neighbours in S;, and by Lemma 2.3, the number of colour

classes in C; of size 2 is at most 10eA. Furthermore, by Lemma 2.8(e), at

most 500eA vertices in S; have external degree at least 1%. Therefore, N(v)

contains at least [Out, |((1 — o)A — (3A+ VA) = 10eA —500eA) > 2|Out,|

107
pairs x, y of strongly non-adjacent vertices, with € Out,,, y € S; forming a

: A
colour class of size 1, and |Out,| < {55.

Consider any such pair. By Corollary 2.7, for each dense set S;, |Overused;
log* A+1, and so the probability that z,y receives the same colour is at least

(A—|—1—2(10g4 A+1)/(A+1)? > ﬁ-z (the worse case is when x, y both belong

to ornery sets with disjoint Overused sets). We also require that no other

verticesin N+ = Out,UOut,UN(z) receive that colour. [NF| < &5+ 5-4+A,

and for any other dense set S;, [Nt 05| < % + 1% + %A + VA < %.
Therefore, the probability that this colour doesn’t appear anywhere else in
NT is at least (%)'Nﬂ/% > . Therefore, Exp(Y3) > &|Out, |, and it follows
as in our analysis of Z; that Pr(Y; < $|Outv|) < e~ ([Outu])

Let Z, denote the number of colours appearing on the external edges

from v, which also are initially assigned to internal neighbours of v during
Step 1. By Lemma 2.3, N(v) intersects at least A — |Out,| — 10eA colour
classes of C;. It is a straightforward application of the Chernoff Bound to
verify that with sufficiently high probability it intersects at least (1 —2v)(A—
Out, — 10eA) classes of C:, and that with probability at least 1 — e?I0utl)
Zy > £|Out,|(1 — 37)(A — Out, — 10eA). By Lemma 2.8(e), the number of
external edges from S; is at most 5¢A?, and it follows that the expected value
of the sum of the sizes of the external neighbourhoods of the colour classes
on which these repeated colours appear is at most 5e¢A? x % x |Out,|, since
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7, < |Out,|. A straightforward application of Azuma’s Inequality shows
that this sum is highly concentrated and in particular that with probability
at least 1 — e~%U0utD) this sum is at most 6e¢A|Out,|.

We now must bound the number of these colours which appear temporar-
ily. Again, we can do this using the methods with which we bounded 7;. If
the average external degree of the colour classes assigned the repeated colours
is at most 6eA, then the expected number of these colours which will appear
temporarily is at most 7¢Z,. We consider choosing the assignment of colours
for Step 1 as we did in our analysis of event A1.1. The choice of the colour for
any colour class u ¢ C; affects this number by at most |N(u) N S;|. It follows
that Pr (Zy < (£[Out,|(1 — 47)(A — [Out,| — 10eA)(1 — 8¢)) < e~0(0utD,

Therefore, with probability at least 1 — e=¢(Outs),

Yo+ Zy 2 (& +(1—49)(1 = 8)(1 — 10e — 124=1)) [Out, [ > 12|Out,|. It
only remains to be shown that with sufficiently high probability, few enough
of the relevant vertices in 5; U Out, are uncoloured during Step 3.

By Lemma 4.3, with probability at least 1—e~?(0ut D) fewer than o [Out, |
colour classes in C; which receive colours appearing on the external edges from
v are uncoloured during Step 3. By Lemma 4.2, with probability at least
1 — e~ 0ute]) " fewer than w55 |Out, | vertices in Out, are uncoloured during
Step 3. Lastly, we will bound the number of colour classes in .S; which receive
colours also received in Out,, and which are uncoloured during Step 3.

To do this, we consider choosing our inital colouring in Step 1 in an
unusual manner. We first choose an initial colouring using a single application
of COL. Let Z denote the set of colour classes of C; which receive the same
colour as a vertex in Out,. For each z € Z, we record the colour, ¢(z),
that z receives. We then recolour all the colour classes in C; using a second
permutation of U;. Finally, for each z € Z, we swap within S; the colour z
recieved in this second permutation, with ¢(z). Note that this generates an
initial colouring with the same distribution as an application of COL.

Using the same analysis as that in Lemma 4.2, we can show that with
probability at least 1 — e~?(0utD before the swapping fewer than ﬁ|2|
vertices in U,¢z 2 are adjacent via a reject edge to a vertex with reject degree
at least % The swap creates at most 4| Z| new reject edges, and so at most
4|12]/S = 55| Z] more vertices in S; will be uncoloured in Step 3 because
of the swap. Therefore, with probability at least 1 — e~?IOutD)  fewer than

551 Z1 + 10551 2] < 755/0uty| colour classes in S; which receive colours also
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received in Out,, are uncoloured during Step 3.

Therefore, Pr(Al.2(v)) < e~ 0ut D) < A=10 a5 |Out,| > log” A.

Pr(Al1.3(i,a)) < A7

To bound the probability of A1.3(7,a), we define Z3 to be the number of
vertices v € 5; with external degree at most a, which recieve the same colour
as an external neighbour during Step 1. Clearly Pr(Al1.3(¢,a)) < Pr(Z; >
2a).

First, we will expose the colours assigned in Step 1 to G — 5;. Then we
expose the choice of C;. Next, we choose the colours for the colour classes of
S;. To do this, we take a random permutation of {1,...,A 4+ 1} — Overused;
and assign the first |C;| colours, in order, to the classes of C; (which were
previously ordered arbitrarily). Each colour class @ € C:, recieves a uniformly
random colour from {1,...;, A+ 1} — Overused;. Therefore Exp(Z3) < |S;| x
a/(A +1—|Overused;|) < 1.5a, by Lemmas 2.1 and 2.6.

Clearly, swapping two colours in the permutation changes Z3 by at most
2. Therefore, by Azuma’s Inequality (see Remark 1.4), Pr(Z; > 2a) <
e—é’(A) < A~10,

Pr(Al.4(i,c)) < A7

To bound the probability of Al.4(7,¢), we define Z; to be the number
of vertices v € 5; which have an external neighbour outside of Big, which
receives colour ¢ during Step 1. Clearly Pr(Al1.4(7,¢)) < Pr(Z, > A3/3%),

Each vertex in G receives a uniformly random colour from {1,..., A4 1},
or from {1, ..., A+1}—Overused, in the case that the vertex is in an ornery set
S;, and so the probability that v receives ¢ is at most 1/(A+1—Overused;) <
% Therefore, Exp(Zs) < % 3 ,eq-(s,uBig,) degs, (v) < 3log” A, by Lemma
2.8(f).

Changing the colour of any vertex, or flipping the colour of any two
vertices in G — (S;UBig;) affects Z4 by at most 2A7/%. Therefore, by Azuma’s
Inequality (see Remark 1.4), Pr(Z, > A%/3%) < e=0(A*2 logT &) - A-10,

Pr(A1.5(7)) < A~
Pr(A1.5(i)) < e %4 < A='0 by Lemma 4.2.
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Pr(Al.6(v)) < A~

Finally, we bound the probability of Al.6(v). For any v in some dense
set S;, expose the choice of C;. There are at most (y + 10€)A < 1.5yA edges
from v to C; — C;. Thus, the expected number of colours on these edges
which are not in A is at most ¥ x 1.59A. A straightforward application of
the Chernoff Bound yields that the probability of more than 2y?A of these
colours not being in A; is at most e~%?). The probability that more than
LA other colours will be added to PR(v) is at most the probability that

1019

more than IO%A classes will be uncoloured during Step 3, which by Lemma

4.2, is at most e=%A), Therefore, Pr(Al.6(v)) < e~%4) < A0,
O

5 Phase 2: Finishing the Dense Sets.

At the beginning of this phase, each 5; has a set of uncoloured colour classes,
W, and a set of unused colours U;. In this phase, we will randomly match
the colours of U; to the classes in W;.

For each 5;, we will match the colours of U; to the classes W; via a random
permutation. We will not be able to retain some of the colours because of
high reject degrees, and so we will have to perform several iterations of this
process. We will continue until the number of uncoloured classes is at most
log? A, at which point we will simply assign a temporary colour to each
remaining vertex.

Often when a class receives and retains a colour, one, or perhaps two,
reject edges will be formed. The other endpoint of each of these edges will
become critical. In each successive iteration, no class w may retain a colour
appearing on an edge from a vertex of w to a critical vertex. We say such
a colour is forbidden for w, and we denote by F(w) the set of forbidden
colours. Furthermore, if in one iteration, at least 'y reject edges incident
to one vertex are formed, then none of the corresponding colour classes will
retain their colour. Note that this implies that no vertex will have its reject
degree increased by more than 5 throughout this phase.

For the analysis of this phase, it will be important that any colour class
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w € W receives and retains each colour in U — F'(w) with equal probability. If
we only uncolour because of reject degree, then this is not neccessarily true, as
a class may be more likely to retain one colour than another. We compensate
for this as follows. If a class w receives a colour ¢, and does not lose it
because of reject degrees, then we make a final random “flip”, i.e. w loses
¢ with probability p(w, ¢), where p(w, ¢) is chosen so that, conditional on w
recieving ¢, w retains ¢ with probability p, where p is a constant independent
of ¢, w. We will specify p, p(c,w) later.

If any vertex receives a colour already assigned to one of its external
neighbours or edges, then we consider that vertex to be temporarily coloured.
For each uncoloured vertex v, we define T'(v) to be the set of such colours.

Phase 2 runs as follows:

1. Initialize W;; = W;, U;; = U, and for each w € W, Fy(w) = (.
2. For k=1 to ko = [(3loglog A — log |W;| —log2)/log 7| (where 7 is a

constant to be specified later):

(a) Initialize W; gy1 = Wik, Ui gp1 = Ui g, and for each w € W, g, F'H(w) =
0. (Remark: F*(w) is the set of colours newly forbidden to
w during this iteration. It is incremented during the procedure

COLOUR.)

(b) We apply the procedure ADJUSTSIZES to modify the set Fj(w)
for each w € Wy, yielding new sets Fj(w) where |Fj(w)| =
Wi | for each w € Wiy and |(F7)™'(c)] = 5=|W;| for each

2l 20
cc Ui,k-
(c¢) Choose a random permutation ¢ : W, — U, .
(d) For each w € W, if
i. ¢(w) ¢ F¥(w) and
ii. there is no neighbour x € S; of w such that the edge (x,w) is
coloured ¢(w), and there are at least Cy — 1 other neighbours
of @1 wiy,...,we,m1 € Wiy with each edge (,w;) coloured
P(w;).
then with probability 1 — p(w, ¢(w)), COLOUR(w, ¢(w)).

(e) For each w € Wi, Fry1(w) := (Fr(w) U FT(w)) N U; jiq
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3. We temporarily colour the classes of W,y with the colours of U, ,,
thus setting Temp; := Temp, U W, 1, .

We assign a colour ¢ to a class w through the following procedure:

COLOUR(w, c)

1. Assign ¢ to w.
2. Wikgr :=Wiggr —w, Ui pp1 = U 11 — ¢
3. for each vertex v € w, if ¢ € T'(v) then Temp; := Temp, U {v}.

4. for each vertex v € w, if an internal edge (u,v) has colour ¢, then for
each edge (u,v') where v" € w' € Wiy, add the colour of (u,v’) to
F(w').

Before presenting the procedure ADJUSTSIZES, we make an important
comment on 2 technical steps. For ease of analysis, we will never allow
Fi(w) to be larger than 5|U; x|, nor will we allow any colour to appear in
more than $|Ui7k| sets Fi(w). If the number of forbidden colours for a class
(or the number of classes for which a colour is forbidden) ever exceeds this
bound, then we remove some colours from some forbidden sets. The danger
here is, of course, that if this happens then there is no guarantee that the
reject degrees will be bounded. However, as we will show in Corollary 5.4,
with sufficiently high probability this never happens, and so the reject degree
of each vertex increases by at most 'y during Phase 2.

ADJUSTSIZES
1. For each w € Wy, if |F(w)| > 41—0|Ui7k| then we replace Fj(w) by an
arbitrary subset () C Fi(w) of size $|Ui7k|.

2. For each ¢ € Uy, if |F7'(c)| >
subset Q; C F7'(c) of size
in ;7 (e) — Q.

3. We select for each w € W, a superset F*(w) D F(w), F*(w) C Uy,
Wi x| such that [(F)7(c)| = 55|Wi | for each ¢ € Uy

+|Ui x| then we select an arbitrary

=|Ui ], and delete ¢ from Fj(w) for each w

2l
20

of size
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The only step of Phase 2 which is not straightforward is Step 3 of AD-
JUSTSIZE. The fact that this step is always possible follows immediately
from the following Lemma.

Lemma 5.1 Let H be any bipartite graph on an n x n bipartition, with
maximum degree al mostt < ¢. There exists a 2t-regular bipartite supergraph
H' D H on the same vertex set.

Proof Denote the parts of the bipartition by A, B. Consider the
following network flow problem defined on the graph H with every edge
directed from A to B. Each a € A has a supply of x(a) = 2t — degy(a), and
each b € B has a demand of y(b) = 2t — degy(b). (Note that 3,4 z(a) =
s Y(D).) The capacity of each edge is 1. Clearly, it suffices to show that
this problem has a solution.

If not, then by the Max-flow Min-cut Theorem (see, for example, [7]) there
are partitions A = A; UAy, B = By UB; such that 3,c 4, #(a) =Y ep, y(b) >
|EH(A17 B2)|'

Now for each a,b, t < x(a),y(b) < 2t < 22 and degy(a), degg(b) >
n—t> %”. Thus, if |B;| < %” then |Ep(Ay, By)| > %”|A1| > Y aea, vla). A
similar situation arises if [A;| > 2. Finally, if [A;] < 2, and |B;| > %, then
Youea, T(a) — Y pep, y(b) < 0, and so there is a solution to the network flow
problem, and hence H' exists. a

We also need the following properties to hold for the colouring produced
by Phase 2:

(P2.1) For each 7 and a > log”® A, |Temp;(a)| < 5a.

(P2.2) For each ornery S;, and each colour ¢, the number of vertices in
S; having an external neighbour outside of Big; truly coloured ¢ is at most
9A31/32.

During the kth iteration of the algorithm, for any colour class w € Wy,
¢ € Uy, we define R(w, ¢) to be the event that w receives ¢ and there is some
neighbour « € S; of w such that the edge (x,w) is coloured ¢, and there
are at least C; — 1 other neighbours of z: wy,...,we,—1 € W, where each
vertex w; receives the colour of (x,w;). We define Hy, to be the history of
the procedure, i.e. the set of choices made prior to the kth iteration.

Lemma 5.2 For any k, Hy,w, ¢, Pr(R(w, c)|H; A (w receives ¢)) < .
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Proof For any ¢, there are at most 2 choices for x. For either choice,
let Z be the random variable denoting the number of edges (z,w'), with
w' € Wi, —w and where ¢(w') is the colour appearing on (z,w").

There are at most 2|W; x| edges from x to W, , and each of them becomes
a reject edge with probability at most |W; x|~!. Therefore, Exp(Z) < 2, and
so by Markov’s Inequalilty (see, eg. [9]), Pr(Z > Cy — 1) < % < a5

Therefore Pr(R(w, ¢)|Hg N (w receives ¢)) < ﬁ. a

We set p = ﬁ, and at the beginning of the kth iteration, we define

p(w, ) to be the unique solution to:
Pr(R(w, ¢)|HiAN(w receives ¢))+(1—Pr(R(w, ¢)|HiA(w receives ¢)))xp(w,c) = p

Note that p(w,c) is always non-negative by Lemma 5.2.

Finally, we define 7 = 21—0 + (1 — %)p < % Note that 7 is both the
probability that a particular w € W} remains in Wjy,y and the probability
that a particular ¢ € Uy remains in Up;.

For each vertex v € S;, we define the potential reject colours, PRy(v), to
be the set of colours in U, appearing on an edge from v to a vertex in a
colour class of W, x, and we set PRy = max,es, {PRi(v)} (recall PRy(v) =
PR(v)). For each 1 < a < A, and 1 < k < ko, we denote by Temp; ,(a)
the set of vertices v with |Out,| < « which in round k receive and retain
a colour which is on an external edge or an external neighbour. Note that

Uy Temp, ;(a) € Temp,(a).

Lemma 5.3 With probability at least 1 — A~WV188) " for cvery 1 < k <k
we have the following:
(@) |[Wiknr] = 7IWeil] < log A%4 [TV

(b) for each vertex v € S;, |PRyyi(v)| < 73 PRy(v)|+log A4 /| P Ry(v)],
(¢) for each vertex v € Uyew,,w, |T(v) N Uiggr| < 7|T(v) 0 Usi| +
10g A3/4 |T(U) N U¢7k|,

(d) for each a > log’ A, |Temp, 4, (a)] < maxjou,|<a [T(v) N Uis| +
log A3/4\/maX|Outv|§a T (v) N Ui,
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(e) foreachw € Wi, |Fry1(w)| < 7| Fi(w)|4+27 P Ry +log A3/4\/|Fk(w)| + PRy,

(f) foreachc € Uy, |F(e)| < 7|Fy (e)|+27 P Ry+log A3/4\/|Fk_1(w)| + PRy.

Proof (a) By the previous remarks, Exp(|W, s41|) = 7|Wix|. We
choose our random permutation ¢ by choosing an unassigned colour from U, j,
for each w € W, ; in sequence. Swapping two colours can affect |W, ;41| by at
most 2C73, and so each choice affects Exp(|W; x41]) by at most 2C5. Therefore
by Azuma’s Inequality, Pr(||W; 41| — Exp(|Wi k41])| > 10g3/4A \Wirl) <

e~bllog”22) = e analysis related to (b) to (f) is similar and we omit it,

noting only that for each w € W, ;, Exp|Firii(w)| < 7|Fe(w)| + 27 PRy,
as the first term counts the expected number of members of Fi(w) which
remain in U; p41, and the second term counts (in fact greatly overcounts) the
expected number of members from 't N U; x41 (and similarly for (f)).

Each of our at most 6kg|S;| bad events occurs with probability at most

e_1°g3/2A, and so the probability that none of them occur is at least 1 —

A—@(w/logA)‘ O

Corollary 5.4 With probability at least 1 — A~ WV182)  for cach 0 < k < ko,

(a) 3THWil < (Wi < 278 W,

(b) PRy, < 672" |Wi,

(¢) for each vertex v € Uyew,w, |T(v)N U x| < 47%|0ut, | +log" ™ A,

(d) for each w € W, |Fr(w)| < %WVML

(e) for each ¢ € Uy, |Fk_1(c)| < $|I/V2k|
Proof Consider the sequence defined by zo = |Wil, af,; = 7o +

:1;,13/14, Ty =TTk — :1;,13/14. If Lemma 5.3(a) holds for each k, and [W, /| >

log? A for each k' < k, then af <|Wig| < @y . Tt is straightforward to verify

that for £ < ko, %Tkl'o < 2y, < 27%24, and that Wi ko | > log2 A, thus proving

(a).
A similar argument, applying property (P1.6) and observing that |W;| >
YA, yields PRy < 27* PRy < 272%(3~|W;|), thus proving (b).
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(¢) follows in the same manner, with the extra log™ A term required
since the error term in Lemma 5.3(c) becomes more significant when |T'(v) N
Usxl < log"™ A.

If Lemma 5.3(a,e) and Corollary 5.4 (a,b,d) hold for each k, then recalling
that |U; x| = |W, x|, we have that for each w € W,

[Frepa(w)] - 7] F3(w)] +127(72’“7|Uz’|)+1°gA\/2|Uzvk|

Uiksrl 7 Uit Ui Uikt
| Fi.(w)] 10g3/4A . log A+/2|U; |
< 1+ 4 oUyrh 2 VIR
Ui NG Ui o1
| Fy(w)] k
< 4 2597".
Uikl !
Since Fo(w) = 0, it follows that
k-1 4
|Fk(w)ﬂUi7k| S |U27k| X 2257(7')]
7=0
1
< —|U; &l
The same analysis applies to (e). O

Lemma 5.5 For each S;, property (P2.1) holds with probability at least 1 —
A6

Proof If Corollary 5.4 holds for each k, then the number of un-
coloured colour classes at the end of Step 1 is at most 275 |W;| < ilog?’ A.
Thus, for any a > log” A, the number of vertices added to Temp,(a) in Step
2 1s at most %a.

By Lemma 5.3 and Corollary 5.4, with probability at least 1 — A=/(V184)
the number of vertices added to Temp,(a) during Step 1 is at most

ko
2a + Z (47”“@ + logl'75 A+ log'75 A\/E) < 2.25a + logz'5 A < 2.5a,
k=1
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and so the lemma follows from (P1.3). O

Lemma 5.6 For each S;, property (P2.2) holds with probability at least 1 —
A6,

Proof The proof is virtually identical to the proof of the bound on
Pr(Al.4(:,¢)) in Lemma 4.4, after observing that for each colour ¢, at most
one vertex in each dense set receives c. 0

Lemma 5.7 With positive probability, properties (P2.1) and (P2.2) hold for
the colouring produced by Phase 2, and the reject degree of each vertex in-
creases by at most Cy.

Proof We define the following events:

A2.1(i,a) — Defined for each 1 <7 < £ and log® A < a < A, this is the
event that |Temp,(a)| > 50a.

A2.2(1, ¢) — Defined for each i such that S; is ornery and ¢ € {1, ..., A}, this
is the event that the number of vertices in .5; having an external neighbour
outside of Big; with colour ¢ is more than 2A31/32,

A2.3(1) — Defined for each 1 < ¢ < ¢, this is the event that for some
1 <k < ko and for some w € W, or ¢ € Uy, |Fi(w)| at some point exceeds
so6 | Wikl-

If S;,5; are at distance at least 3 from each other, then any two events

< |Wi k| or [ I (c)| at some point exceeds

A2.21(i,y1), A2.22(J, y2) are independent. Thus, each event is independent of
all but at most A? other events. Furthermore, by Lemmas 5.5, 5.6, Corollary
5.4 and properties (P1.1) and (P1.2), the probability of each event is less
than A%, Therefore, our lemma follows from the Local Lemma. a

6 Phase 3: The Temporary Colours

In this phase, we change the colours of all the temporarily coloured vertices,
other than those in H' which we deal with in Phase 4. The first step is to
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deal with the kernels of the dense sets. After that, we process the dense sets
S1,...,50 in sequence. Within each dense set, we recolour the temporarily
coloured vertices in nondecreasing order of their external degrees. These
vertices will then be considered to be truly coloured.

6.1 Step 1: The Kernels of the Ornery Sets.

For each ornery \5;, we will recolour all vertices in Temp, N K, such that the
following properties hold.

(Q3.1) We create no new external reject edges.

(Q3.2) There are no adjacent v € K;, u € 5;, 7 <1, with the same colour.

(Q3.3) The reject degree of any vertex increases by at most 3.

In order for future steps to succeed, we will also need a few more proper-
ties.

(P3.1) For each v € HUH', N(v) has at least %A colours which appear
truly twice.

(P3.2) For each v € G — (H U H') such that |Out,| > log® A, the number
of colours appearing truly twice in N(v) exceeds the number of colours on
external edges of v which do not appear truly on N(v) by at least z5=|Out,|.

For each ornery set 5;, and each v € Temp, N K;, we will swap the colour
of v with that of a vertex u € K; — Temp,. Of course, we must select u
carefully. Consider any colour class w of colour ¢ which contains a vertex in
Temp, N K;. We refer to w as a swapping class, and we define Swappable,, to
be the set of colour classes w' € C; with the following properties:

(a) |w/| =1,

(b) the vertex contained in w' lies in K,
)
)

. . ! . .
c) the vertex contained in w does not lie in Temp,,

(
(d) no vertices in Out,/, nor any external edges from w’ have colour

w 7
¢, and

(e) no vertices in Out,,, nor any external edges from w have the colour
currently assigned to w'.

Note that swapping the colour of any one swapping class w with that of
some w € Swappable, will preserve properties (Q3.1), (Q3.2) and (Q3.3).
However, the cumulative effect of several such swaps might violate (Q3.2)
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and (Q3.3). We will deal with that concern later. First, we will establish
that for each swapping class w, Swappable,, is large.

Lemma 6.1 For each swapping class w, |Swappable, | > logﬁ.

Proof We denote the colour of w by c.

Let T; be the set of colours appearing on Temp, N K;. Temp, N K; =
Temp;(log® A), and so by Property (P2.1), |Temp, N K;| < 5log® A. Further-
more, recall that 7; N Overused; = (.

Claim 1: There are at least N%%A
are neither incident to any external edge of colour ¢, nor adjacent to any

truly coloured vertices in K; which

vertex of G — .5; of colour c.

Proof:

Case 1 c appears on at least ﬁ edges of E(S5;,G — 5;).

Since ¢ ¢ Overused;, ¢ € Moderate;, and so by Modification 2 of Section
2.3, no vertex of Big, has colour ¢. Thus, by Property (P2.2), at most
2A3/32 vertices of K; are adjacent to a node of colour ¢. Also, because
¢ ¢ Overused;, at most A — logﬁ nodes of K; are incident to an edge of
E(S;,G — 5;) of colour ¢. By Lemma 2.5(b) and the fact that S; is ornery,
|K;| > A—log* A—log” A, and by Property P(2.1) all but at most 5log® A of
its elements are truly coloured. Thus we have at least A — log* A —log® A —
5 10g6 A — 2A31/32 _ (A — logﬁ) A) > 210?0 A truly coloured vertices which are
neither incident to any edge of E(S;, G—.5;) nor any vertex of G —v of colour

c.
Case 2 ¢ appears on fewer than ﬁ edges of E(S5;,G —5;).
At most one colour class within Big; has colour ¢, and it has less than %
neighbours in K;. The rest follows as in Case 1. O

Since S; is ornery, |C;| > A—log* A, and by Lemma 2.5, |.S;| < A+4log” A.
Thus, the number of vertices in \S; which do not lie in singleton colour classes
is at most 3log” A. Since w € K;, |Out,| < log® A and so at most 2log® A
colour classes of C; have a colour appearing on an external neighbour of w
or an external edge from w. Also, again by Property (P2.1), |Temp, N K;| <

51og® A.
Therefore, by Claim 1, |Swappable | > N%%A —3log”® A — 2log® A —
5log® A > —S—. O

log!! A
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Consider any swapping class w of colour ¢. We will select a subset
Candidate,, € Swappable, of size 20, whose elements we refer to as can-
didates. We will require the following condition:

(Q3.4) There is some w" € Candidate,, of colour ¢ such that

(a) w’ is not a candidate for any other swapping class,

(b) w' is not an external neighbour of any member of Candidate,. for
any swapping class « (in some other dense set), which also has
colour e.

(c) w' is not an external neighbour of any swapping class x, which
has a candidate of colour c,

(d) no candidate of any swapping class which has an external neigh-
bour in w has colour ¢, and

(e) there is no vertex u, swapping class w; of colour ¢, and candidate
w; of wy with colour ¢;, all in the same dense set as w and w',
and with

i. the edge (u,w') present and coloured ¢, and the edge (u,w))
present and coloured ¢y,

ii. the edge (u,w") present and coloured ¢, and an edge from u
to wy present and coloured ¢,

iii. an edge from u to w present and coloured ¢, and the edge
(u,w)) present and coloured ¢y, or

. ! !
iv. an edge from u to w present and coloured ¢, and an edge
! !
from u to w; present and coloured ¢;.

For each swapping class w, we will swap the colour on w with that on
the class referred to in (Q3.4). (Q3.4) enforces properties (Q3.1), (Q3.2)
and (Q3.3). We will require another condition on our candidates, to enforce
properties (P3.1) and (P3.2).

To enforce (P3.1), it suffices to bound the number of vertices in the neigh-
bourhood of any v € H U H' which are candidates of any swapping class.
To enforce (P3.2), we make the following definitions. Consider any vertex
veG—(HU H/) with |Out,| > log® A. Let C;(v) be the set of colours which
each appear truly at least once in Out,, and truly at least once in N(v)NS;.
Let Dy(v) be the set of vertices in N(v) which are truly coloured with colours
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from C1(v). Let Dy(v) be the set of vertices in N(v) which are truly coloured
with a colour appearing on some external edge from v. To enforce (P3.2) it
suffices to bound the number of candidates in D(v) = Dy(v)U Dy(v) for each
such v. Thus, we require the following condition:

(Q3.5)

(a) for each vertex v € H U H', the number of candidates in N(v) is
at most log?® A, and

(b) for each vertex v € G—(HUH") with |Out,| > log® A, the number
of candidates in D(v) is at most @|Outv|.

Note that if (Q3.5) holds, then by (P1.1) and (P1.3), (P3.1) and (P3.2)
will both hold after completing all swaps. It only remains to be shown that
we can 1n fact construct the sets Candidate,,.

Lemma 6.2 We can choose the sets Candidate,, for all swappable classes

w, such that (Q3.4) and (Q3.5) hold.

Proof To choose Candidate,,, we simply select 20 members of Swappable,,
at random. We will use the Local Lemma to prove that (Q3.4) and (Q3.5)
hold for every swapping class w with positive probability.

For each swapping class w, we define A3.4(w) to be the event that (Q3.4)
fails to hold for w, and for each vertex v, we define A3.5(v) to be the event
that (Q3.5) fails to hold for v. It is straightforward to verify that for any
swapping class w, A3.4(w) is independent of the set { A3.4(w;y) : dist(w,wy) >
6} U{A3.5(v) : dist(w,v) > 6}, and similarly for A3.5(v) for each v. Thus, it
suffices to show that both Pr(A3.4(w)) and Pr(A3.5(v)) are less than A5,

First we will bound the probability of A3.5(v). Consider any vertex v.
Let Ni(v) be the union over all ornery S; such that |[N(v)N.S;| > N%%A of
N(v) N S;, and let No(v) be the union over all other ornery S; of N(v) N S;.

Ni(v) meets at most 2log'' A ornery sets, and each contains at most
5log® A x 20 candidates. Therefore, Ny(v) contains at most 200 log'” A can-
didates.

To bound the number of candidates in Ny(v), note that for any vertex
u € Ny(v), and any N' C Ny(v)—{u}, conditional on any partition of N into
candidates and non-candidates, the probability that u is a candidate is at

most 5log® A x (20/“)?11 %) < 10g1: 2 Thus, the probability that the number
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of candidates in N3(v) exceeds %loglgA is at most the probability that the

binomial variable BIN(|Ny(v)], ligZ%—A) exceeds 1log' A which is much less
than A%, Therefore, the probability that N(v) contains more than log'® A
candidates is less than A78,

The same analysis applies to the number of candidates in Out,,, and also to
the number of candidates in D(v), by observing that since no colour appears
more than twice in S;, we have |D(v)| < 5|Out,|, and so Pr(A3.5(v)) < A5,

To bound the probability of A3.4(w) for any swappable vertex w, we will
first select the candidates of all swapping vertices other than w, and then we
will select the candidates for w.

Suppose w € K; and w has colour ¢. Before we select the candidates
for w, we will consider the number of members of Swappable,, which would
make bad candidates, i.e. those that would not meet the criteria of condition
(Q3.4). They fall into the following five subsets of Swappable,,.

Bad,={w'|w" is a candidate for another swapping class w; }

Bad,={w'|w" is an external neighbour of a candidate for another swapping
class wy, of colour ¢}

Bads={w'|w" is an external neighbour of another swapping class w,
which has a candidate of colour ¢}

Bad,={w'|w" has the same colour as a candidate for another swapping
class wy, which has an external neighbour in w}

Bads={w'| there is some vertex u, and another swapping class w; of
colour ¢; and with candidate w;, violating condition (Q3.4)(e) }

We set Bad = U>_,Bad;. A3.4(w) is the event that each of the 20
candidates chosen from Swappable, lies in Bad, and so Pr(A3.4(w)) <
(|Bad|/|Swappable, |)*°. We will show that with probability at least 1 — A~
|Bad| < log* A, and so, conditional on this bound holding,

log® A\ *
Pr(A3.4(w)) < ( g ) < A0
log!'t A
Thus, Pr(A3.4(w)) < 2A77 < A™5,
It only remains to bound the size of Bad.
Since there are at most 5log® A swapping classes in S;, each having 20
candidates, we have |Bad;| < 1001og® A.
To bound the size of Badsy, we recall that by Lemma 2.5, there are at
most Alog” A external edges from S;. Thus, we can apply similar analysis
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to that used to bound Pr(A3.5(v)) to show that with probability at least
1 — A=, S; has at most log®” A neighbours which are candidates. Because
each such candidate lies in the kernel of another ornery set, it has at most
log® A neighbours in S;, and so we have Pr(|Bad,| > log™ A) < A~°.

To bound the size of Bads, we note that by Lemma 2.5, there are at most
Alog” A swapping classes in other ornery sets which have external neighbours
in 5;. Fach of these picks a candidate of colour ¢ with probability at most
ZO/IOg%A, and these choices are independent. Thus, Pr(|Bads| > log™ A) <
Pr(BIN(Alog” A,201og" A/A) > log” A) < A1,

Since w has at most log” A external neighbours, |Bady| < 100log” A.

Since S; has at most 1001log® A candidates, |[Bads| < 4001og® A.

Therefore, with probability at least 1 — 2A71% > 1 — A7 |Bad| >
1001og® A + log™ A + log™ A + 1001og” A + 4001log® A < log™ A, and the

result follows. O

6.2 Step 2: The Remaining Temporary Colours.

At this point, we will remove the artificial edges and vertices added to GG in
Section 2.3, as they were needed only to enable us to recolour the temporary
vertices in the kernels of the ornery sets in Section 3.1. From this point on,
it is important to note that the maximum degree in G has returned to A.

The remaining temporarily coloured vertices are relatively straightfor-
ward to deal with. We wish to colour all such vertices in G — H' (i.e. those
with external degree at most =A) such that (i) we create no new external
reject edges, (ii) there are no adjacent v € S;,; u € S;, j < 1, with the same
colour, and (iii) the reject degree of any vertex increases by at most Cs — 3.

We deal with the sets S; in sequence.

For any 5;, we first recolour all the temporary vertices with external
degree at most log”® A. If there are any such vertices, then S; is not ornery,
for otherwise they would lie in the kernel K;, and would already be recoloured.
Furthermore, by Property (P2.1), |Temp;(log® A)| < 5log” A.

Because S; is not ornery, it has at most A —log* A colour classes, and so
there are at least log® A colours not already used on the vertices of S;. We
will use these new colours to recolour Temp;(log” A) in a greedy manner.
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We recolour the vertices one at a time. At each turn, the vertex, v, has
at most

(a) 5log” A new colours forbidden because they have already been
used in 5,

(b) 2log® A new colours forbidden because they appear on an external
neighbour, or an external edge of v, and

(c) 5log” A/(C5 — 3) new colours forbidden because of vertices in .S
whose reject degrees have already been increased by C3 — 3 during
Step 2.

Since we have log* A colours to choose from, we will always be successful.

We then recolour the rest of Temp, in non-decreasing order of external
degree. At each turn, vertex v with external degree a will, by Property
(P3.2), have at least ﬁa colours available which do not appear on any
neighbours of v, or any external edges of v. By Property (P2.1), at most
5a members of Temp, have been coloured thus far, and so there are at most
ba/(Cs —3) < ﬁa colours forbidden because of vertices in S; whose reject
degrees have already been increased by C5 — 3 during Step 2. Thus, we will

always be successful.
7 Phase 4 - Finishing the Sparse Vertices

At this point, we have a partial proper colouring of (&, such that:

(a) every vertex in G — (H U H') is coloured,
(b) the reject degree of each vertex is at most Cy + Cy + Cs, and

(c) for each uncoloured v, N(v) has at least %A colours which appear

truly twice (i.e. P(3.1) holds).

In this, the final stage, we take advantage of (P3.1) to complete our
colouring without increasing the reject degree of any vertex by more than

Cly.
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7.1 Step 1: Almost All the Rest.

We colour nearly all of the remaining vertices through the following proce-
dure. At the beginning of each iteration, vertices which do not have colours
are referred to as colourless. Each colourless vertex receives a colour. Some of
these vertices retain their colours, while others are uncoloured. Any colour-
less vertex which retains its colour throughout that iteration is then referred
to as coloured. Such a vertex will never be uncoloured.

Complete ky = [3log A/(—log(1 — 1072??))] iterations of the following:

1. Assign to every colourless vertex, a colour chosen uniformly at random

from {1,.... A+ 1}.

2. For each u € V(G) and colourless xy,...,2¢,/2 € N(u) such that each
x; receives the colour on the edge (w,z;) in this iteration, uncolour

L1y eeey 1}04/2.
3. If any vertex, v, receives a colour which

(a) appears on a coloured neighbour,
(b) is assigned in this iteration to a colourless neighbour, or

(c) is an element of Crit(v) (defined in Step 4).
then uncolour v.

4. If any vertex, u, is incident to at least % reject edges formed during
Phase 4, then that vertex is said to be eritical, and for each uncoloured
v € N(u), if |Crit(v)|] < 1A, then we add the colour of the edge
(u,v) to Crit(v).

Remark 7.1 If for every vertex v, the number of critical neighbours of v
never exceeds IO%A, then no vertex will have its reject degree increased by
more than (. It is this case in which we are most interested, and we justify
focussing on this case with Lemma 7.2.

We will also require the following property to hold at the end of Step 1.
(Q4.1) No vertex has more than V/A uncoloured vertices within a distance
of 2.
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Lemma 7.2 Consider any round ¢ > 1, and any two disjoint sets XY of
colourless vertices, with | X1, |Y| < 1A, Let Hi_y denote the partial colour-
ing produced through the first ¢ — 1 iterations of Phase 4, and let Col;(X)
denote the vector of colours received by the vertices of X during the ith it-
eration. For any possible H;_1,Col;(X), the probability that no vertex in 'Y

retains its colour during round i, conditioned on H;_1,Col;(X) and the event
¥ 1

, where ( = 55

that every vertex in X retains its colour, is at most 2(1—()

Proof Throughout this proof, all probabilities will be conditional on
Hi—1,Col;(X) and the event that every vertex in X retains its colour. We
make reference to colours received and retained during round .

Claim: For any v ¢ X any colour ¢, any colourless vertices vy, ..., v; and
any list of colours ¢, ..., ¢;, the probability that v receives ¢, conditioned on
the event that vy receives ¢;, for each 1 < k& < ¢, is at most %. Furthermore,
for each v, this probability is at least ﬁ for all but at most 2| X| values of
c.

Proof: We outline the main ideas behind the proof here. A detailed proof
is straightforward, but somewhat tedious, and we omit the details.

The conditioning on H;_; has no effect. Suppose X = {z1,...,2x|}. For
each j = 1,...,|X|, the colour that x; receives exposes at most one reject
edge (x;,u;), and if v € N(u;) then conditioning on the event that x; retains
that colour somewhat decreases the probability that v receives the colour of
the edge (u;,v), by an amount that is determined in part by v, ..., v, and
€1y ..., ¢k Furthermore, if v € N(a;) then conditioning on the event that
x; retains its colour exposes that v does not receive the same colour as x;.
Each of the at most 2|X| aforementioned colours are assigned to v with a
probability that is less than ﬁ’ perhaps as low as 0. Fach of the remaining
colours is equally likely to be assigned to v, and so is selected with probability

at least ﬁand at most 1/(A + 1 —2]X]) < 2/A. 0

Let F; be the event that at least ( — %) |Y| members of Y are un-
coloured during Step 3, and let E; be the event that at least (%) Y| mem-
bers of Y are uncoloured during Step 2. We will show that each of these
events holds with small probability.

To bound the probability of E;, we first expose the colours assigned to

all uncoloured vertices outside of Y, and then expose the colours assigned to
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the vertices of Y, one at a time. For each vertex v, we say that a colour is
forbidden if it lies in Crit(v) or if it appears on a coloured vertex in N(v). We
denote A, to be the number of vertices in Y which receive either a forbidden
colour or the same colour as a colourless neighbour outside of Y, A, to
be the number of vertices in Y which receive a colour which has already
been exposed on a previous member of Y, and A3 to be the number of
vertices which receive a colour which is not forbidden, and is not yet exposed
as being assigned to a neighbour or a previous member of Y. Note that
every vertex counted in A; can cause at most one vertex counted in As to

lose its colour, and so if F; holds, then A, > Az — (%) |Y|. Therefore
Pr(Ey) < Pr (4, > S Y|) +Pr(4s < 2|Y)).

Every time we expose the colour assigned to a vertex in Y, the probability
that it is one which is already exposed on a previous member of Y is, by
our Claim, at most %, and the probability that it is neither forbidden, nor
already exposed on a neighbour or another member of Y is by Property (P3.1)

and our Claim, at least (%A — Y| - 25A - 2|Y|) > % Therefore,

At1 1070

ey? ey? ey?
Pr{A; < - |Y|] < Pr|BIN[|Y], -] < —|Y|

16 12 16

by the Chernoff Bound. Similarly, since % < %, we have

ey? y® ey?
Pr{A,>-|Y|] < Pr|BIN[|Y],=~]>—-|Y|

32 50 32

< (1=30M.

If |Y| > L/A then Pr(f;) < 2(1 =30V < (1 —20)V.

If §_% < |Y] < VA then BIN(|Y], %) is asymptotic in distribution
to a Poisson variable with mean less than 1, and so Pr (Ag > %|Y|) <
e/ (S |Y ) < ¢TI Y] < (7€ then Pr(A, > 1) < O(A™Y) < ¢I¥I. There-
fore again we have Pr(F;) < (1 =3O+ (M < (1 =20V

To bound Pr(F3), we first note that our claim implies that that for any
colourless vertices vy, ...,v; and any list of colours ¢y, ..., ¢;, the probability

t
that v; receives ¢; for each 1 <1 <t is at most (%) . Using this in place of
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Lemma 4.1, observing that 2 5 1072 and following the same proof as that

32
—20
of Lemma 4.2, we can show that Pr(F£;) < (§1020)10 M ¢l We omit
the details, noting only that the extremely small value of this probability is
due to the large value of C4!.

Therefore, the conditional probability that no vertex in Y retains its

colour is at most (1 —20)V1 4 (M1 < (1 — )Y 0

Lemma 7.3 For each vertex v, the probability that more than IO%A neigh-

bours of v become critical is at most A-VA,

Given any U = {uy,...,ujp-20a} C N(v),and any T; = {t;1,... ’tj,%} C
N(uj), g =1,...,107%°A, we consider the probability that for each j,k, ¢;x
receives and retains ¢;y, the colour of the edge (¢;x,u;). Note that each
vertex can contribute to the reject degree of at most one other vertex, and
so we can assume that the sets 7} are disjoint.

For each ¢; ; we choose an iteration 7,5, and we will bound the probability
that every ¢, receives and retains c¢;; during iteration 7, .

For each iteration i, we define I; = {t;; : ¢; = 1}. During iteration

i, the probability that each ¢;; € I; receives and retains c¢;; is at most
I;
the probability that each ¢;; receives ¢;; which is (ﬁ)| |. By Lemma
7.2, conditional on this happenning, the probability that each ¢ € Uy, [ 1s
uncoloured during round i is at most (1 — ¢)Me>ifvl,
Therefore, the probability that each vertex in U becomes critical is at

most

- C4 19—30
A 10—30A 1 %10—30A ' C _10—30A 1 410 A
— 1 — w1 < <_4!) l
(%) <A) 2= = \3 “\2
—1073°A
< (ﬁ;)
— \100 ’
where the sum }7; is over all choices for the set of iterations i, ;. Therefore,

A 04 -10730A o) N
Pr(A,) < (10_3%) (ﬁ') < e ) £ AVE
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since (Cy/100)! > 103!, O

Remark 7.4 The reason that we chose such a high value for (4, is that
in our proof of Lemma 7.3 it is important that Cy be at least as high as a
function of (. By complicating our argument somewhat further, it is possible
to use a much smaller value of Cy, which is not a function of (.

Lemma 7.5 With positive probability, (Q4.1) holds, and the reject degree of
each verter increases by at most Cy — 1.

Proof For each vertex v, define A4.1(v) to be the event that there
are more than VA uncoloured vertices of distance at most 2 from v, and
define A4.2(v) to be the event that the number of critical neighbours of v
ever exceeds (A. Recall that A, A4.2(v) implies that the reject degree of each
vertex increases by at most Cy — 1.

By Lemma 7.2, noting that ky was chosen so that (1 — ()% = A=3 we

have
2

Pr(A4.1(v)) < (?K) (1—)fV2d < A-VA,

Furthermore, by Lemma 7.3, Pr(A4.2(v)) < AV,
It is straightforward to verify that each event is independent of all but at
most 2A*1 other events, and the lemma follows by the Local Lemma. a

7.2 Step 2: Finishing Off the Stragglers.

For each uncoloured vertex v, we will select a subset Candidate, of the colours
not yet appearing in N(v), whose elements we refer to as candidates. We
require the following condition:

(Q4.2) For each uncoloured v, there is some ¢ € Candidate,, such that

1. cis not a candiate for any neighbour of v, and
2. there is no uncoloured vertex v, candidate ¢ of v" and u € N(v)NN(v'),

with the edge (u,v) coloured ¢ and the edge (u,v") coloured ¢'.
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We then assign each vertex v the colour referred to in (Q4.2). (Q4.2a)
ensures that we will then have a proper vertex colouring of G, and (Q4.2b)
ensures that the maximum reject degree will be at most C; +Cy 4+ Cs+ Oy <
C' —3. It only remains that we can select a suitable set of candidates for each
uncoloured vertex.

Lemma 7.6 We can choose the sets Candidate, such that (Q4.2) holds.

Proof Consider any uncoloured vertex v. By property (P3.1), there
are at least %A colours which do not appear on N(v). To choose Candidate,,
we simply select 20 of these colours at random. Define A4.3(v) to be the
event that (Q4.2) does not hold for v. By property (Q4.1), Pr(A4.3(v)) <
(40\/5/%A) 0 < A7, Furthermore, each event is independent of all but
at most A* others. Therefore, by the Local Lemma, Pr(A,A4.3(v)) > 0. O

& The Aftermath

And finally, we recolour the reject edges to get our total colouring of G.

Proof of Theorem 1.1:

Start with any A 4 1 proper edge-colouring of ¢G. Find a A + 1 vertex
colouring such that the reject degree of any vertex is at most ¢’ — 3, as
guaranteed in Sections 3 — 7. The reject graph will have maximum degree
at most C' — 2 and so by Vizing’s Theorem, we can recolour the reject edges
with ¢ — 1 new colours, thus yielding a total colouring with at most A 4 C'
colours. O
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