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endpoints. The total chromatic number, �00(G) is the least number of coloursrequired for a total colouring of G.This concept was introduced independently by Behzad [5] and Vizing [22],who each conjectured that any simple graph with maximum degree � hasa � + 2 total colouring. Note that if true, this conjecture is tight as everysuch graph requires at least � + 1 colours and there are some graphs suchas K�+1, � odd, which require � + 2 colours. Kilakos and Reed [15] haveshown that the fractional total chromatic number is at most �+2. For moreinformation on total colouring, see the recent book by Yap [23].The �rst �+o(�) bound on the total chromatic number of such a graphwas �+2p�, due to Hind [11]. More recently, H}aggkvist and Chetwynd[10]have improved this bound to �+ 18�1=3 log(3�). In [13], Hind, Molloy andReed improve this bound further to �+poly(log�). Brualdi [6] and Alon [1]asked whether the total chromatic number of such graphs is at most � + Cfor some absolute constant C. Here, we answer this question positively:Theorem 1.1 If a simple graph G has maximum degree � at least as largeas a particular constant, then �00(G) � �+ C, where C = 1026.Remark 1.2 We do not attempt to optimize our constant C, preferingrather to choose a value which provides a simpler presentation. In fact,by adding a few more intricacies to our proof, and being a little more carefulin our calculations, we can obtain C = 500, and this technique will probablyyield C near 100. However, it does not appear that this technique will yielda value of C which is very close to 2, say less than 10.We make no attempt to �nd the neccessary lower bound on �, onlyinsisting that � satis�es various implicit conditions. Note that, using forexample the aforementioned result of Hind, Theorem 1 implies the existenceof a constant C 0, such that for any � and any G with maximum degree �,�00(G) � �+ C 0.Our proof relies heavily on several applications of the Lov�asz Local Lemma.If � does not grow too quickly with n, say � = o(log1=3 n) (for example if �is �xed) then the technique of Beck[4] can be applied to make the argumentconstructive, providing a polytime algorithm to �nd a �+C total colouringof our graph. See [19] or [20] for details.In [13], we show that if we begin with any � + 1 vertex colouring of G,satisfying a particular condition (where the existance of such a colouring is2



guaranteed in [12]), then we can always complete this colouring to a totalcolouring of G using at most � + poly(log �) colours. Here, we take theopposite approach. We show that if we begin with any �+ 1 edge colouringof G, then we can essentially complete it to a total colouring of G usingat most � + C colours. By \essentially", we mean this: There will be asubgraph, R � G called a reject graph, such that upon deleting the colourson the edges of R, we have a partial total colouring of G, using �+1 colours,where only the edges of R are uncoloured. Furthermore, we will guaranteethat R has maximum degree at most C � 2, and so by Vizing's Theorem, wecan edge-colour R using C � 1 new colours, thus obtaining our � + C totalcolouring.In [18], we show that for any simple graph G with maximum degree �, ifthe neighbourhood of each vertex of G has at most (1� �)��2� edges for some� > 0, then �(G) � (1 � �)�, for some � = �(�) > 0. Reed [21] extends thisresult to show that if the size of the largest clique in G is at most (1 � �)�then �(G) � (1� �0)�, for some linear function �0 = �0(�) > 0, where �0 canbe taken to be �2 for � su�ciently small. The techniques used in this paper,are similar to those introduced in [21].If the neighbourhood of each vertex of G had at most (1 � �)��2� edges,then we would be able to complete our total colouring of G in a mannersimilar to that in [18]. Of course, this is not always the case. However, wecan make use of a partition, introduced in [21], of V (G) into S1; : : : ; S`;H,such that each vertex ofH, has at most (1��)��2� edges in its neighbourhood,and for each i, the number of edges across the cut (Si; G� Si) is small.We will generate our vertex colourings in a random fashion. Several timesin this paper, we will make use of the following tools of the ProbabilisticMethod.The Local Lemma [8] Suppose A = A1; : : : ; An is a list of randomevents such that for each i, Pr(Ai) � p and Ai is mutually independent ofall but at most d other events in A. If ep(d + 1) < 1 then Pr(^ni=1 �Ai) > 0.The Cherno� Bound Suppose BIN(n; p) is the sum of n independentBernoulli variables each occuring with probability p. Then for any 0 < a �16np: Pr(jBIN(n; p)� npj > a) < 2e�a2=3np:3



Remark 1.3 There are stronger versions of the Cherno� Bound (see eg. [2]),but this one is strong enough for our purposes. To deal with the case a > 16npit will su�ce to use Pr((jBIN(n; p) � npj > a) < Pr(jBIN(n; p) � npj >16np) < 2e� 1108np.Azuma's Inequality [3] Let 0 = X0; : : : ;Xn be a martingale withj Xi+1 �Xi j� 1for all 0 � i < n. Let � > 0 be arbitrary. ThenPr[j Xn j> �pn] < e��2=2:This yields the following very useful standard corollary.Corollary Let Y = Y1; Y2; : : : ; Yn be a sequence of random events. Letf(Y ) = f(Y1; Y2; : : : ; Yn) be a random variable de�ned by these Yi. If for eachi: max j Exp(f(Y ) j Y1; Y2; : : : Yi+1)�Exp(f(Y ) j Y1; Y2; : : : Yi) j� cithen the probability that j f �Exp(f) j> t is at most:2 exp �t22P c2i !For more details on this corollary and an excellent discussion of Martin-gale arguments see either [16] or [2].Remark 1.4 We often apply this corollary to show concentration of vari-ables which are functions of random permutations. Typically, these appli-cations have the following avour. Suppose Z is a function of a randompermutation � : W ! U , where W = fw1; :::; wng. We choose our permuta-tion by selecting for each wi in turn, a random member of U from amongstthose not previously selected. We let the event Yi denote this choice, and notethat if for all j > i, the maximum e�ect on Z of swapping the values of �(wi)and �(wj) is at most ci, then max j Exp(f(Y ) j Y1; Y2; : : : Yi+1)�Exp(f(Y ) jY1; Y2; : : : Yi) j� ci, and so Azuma's Inequality applies.4



Many times throughout the paper, we need to simplify expressions involv-ing terms of the form �nk�. The following inequality, which is easily veri�edwill be very useful:  nk! � �enk �k :If A;B are disjoint subsets of the vertices of a graph G, we denote byEG(A;B) or E(A;B) the set of edges of G with one endpoint in each ofA;B. We denote by G the complement of a graph G, and for any subgraphH � G, we denote by S the complement of H. If S is a subset of the vertexset of G, then when no confusion is possible we sometimes abuse notationand use \S" to also refer to the subgraph induced by S. Thus S refers tothe complement of the subgraph induced by S. For any vertex v, N(v) isthe neighbourhood of v and for each S � V (G), degS(v) = N(v) \ S. If foreach w in a ground set W , we have a set F (w) � U , then for each u 2 U , wedenote by F�1(u) the set fw 2 W : u 2 F (w)g.Throughout the paper, we assume G to be �-regular, since it is straight-forward to show that any graph with maximum degree � is a subgraph ofa �-regular graph (see for example [21]). We only claim statements to bevalid for su�ciently large �. We often use the notation �(X) to mean anexpression which is asymptotic to zX where z is some implicit positive con-stant. In general, for the sake of presentation, we omit bc and de signs. Alllogarithms have base 2.Throughout this paper, we introduce several new terms. For the aid ofthe reader, we provide an index at the end of the paper.2 Isolating the Trouble-makers.In this section we partition the vertices of G into S1; : : : ; S`;H, such that (a)each vertex of H, has relatively few edges in its neighbourhood, (b) each Siis very nearly a clique, and (c) for each i, the number of edges across the cut(Si; G � Si) is small. This partition was introduced in [21]. We include thedetails here for completeness. 5



2.1 Dense SetsWe set � = 10�6, and we call a vertex x 2 V (G) dense if jE(N(x))j >(1� �)��2�. Otherwise x is sparse.Given a dense vertex x, we can recursively de�ne a (unique) set Sx �V (G) as follows. Initially set Sx = N(x) [ fxg, and then1. delete from Sx any vertex y 2 Sx with jN(y) \ Sxj < 3�4 , until no suchy remains, and then2. add to Sx any vertex y =2 Sx with jN(y) \ Sxj > 3�4 , until no such yremains.It is not hard to verify (see [21]) that Sx is uniquely de�ned, i.e. thatit does not depend on the order in which vertices are deleted or added, andthat for any v 2 Sx or u =2 Sx, jN(v) \ Sxj � 3�4 and jN(u) \ Sxj < 3�4 .We refer to Sx as a dense set. The following basic facts about the structureof Sx will prove to be useful:Lemma 2.1 (a) jN(x)� Sxj < 5�� and jSx �N(x)j < 2��,(b) �� 5�� < jSxj < �+ 2��,(c) x 2 Sx,(d) jE(G � Sx; Sx)j < 4��2, and(e) jE(Sx)j < ��2.Proof Suppose N(x)�Sx = fu1; : : : ; usg where the vertices are listedin the order that they are removed from Sx. Then degN(x)(ui) < 3�4 +(i�1),and so since jE(N(x))j > ��2� � �2�2 we have that 12( s�4 � s(s�1)2 ) < �2�2,and so s < 5��. Similarly, if Sx�N(x) = fv1; : : : ; vtg where the vertices arelisted in the order that they are added to Sx, then degN(x)(vi) > 3�4 � (i�1),and so 12(3t�4 � t(t�1)2 ) < �2�2, yielding t < 2�� (in fact t < 1:5��) and thusproving (a).(b) and (c) are merely trivial corollaries of (a), but worth stating, never-theless.Since x is dense, jE(G � N(x); N(x))j < ��2. Every time a vertex isremoved from Sx, it increases the number of edges across this cut by at most6



�2 . Each time a vertex is added to Sx, it decreases the number of edges acrossthis cut, and so (d) follows from (a).(e) follows by noting that jE(Si)j � jE(N(x))j + �t2� + t�4 and recallingthat we have shown t < 1:5��. 2As we will now see, we can partition V (G) into a sequence of dense sets,and a sparse set containing no dense vertices, such that there are very fewedges between sets.Lemma 2.2 Let G be any �-regular graph. We can partition V (G) intoH;S1; S2; : : : ; S` such that(a) for each 1 � i � `, Si = Sx for some dense vertex x, and(b) for each dense vertex x, x 2 Si for some i.Proof To prove (a) and (b), it is enough to show that if x; y areboth dense, then either Sx \ Sy = ; or y 2 Sx (and so by symmetry x 2 Sy).Suppose the contrary, i.e. y =2 Sx and Sx \ Sy 6= ;, and consider any a 2Sx \ Sy.From Lemma 2.1(a), the size of the symmetric di�erence of Sx and N(x)is at most 7��. Thus, a sees at least 3�4 � 7�� vertices of N(x), and also ofN(y). Therefore jN(x) \N(y)j > �2 � 14�� > �4 .Also, jN(x)\N(y)j < 3�4 +7��, since y =2 Sx, and so jN(x)�N(y)j > �8 .Therefore, if there are at least �264 edges from N(x)\N(y) to N(x)�N(y)then x is not a dense vertex, and if there are at most �264 such edges, then yis not a dense vertex, yielding a contradiction. 2We refer to an edge (v; u), with v 2 Si, u =2 Si as an external edge of Sifrom v, and we refer to an edge of E(Si; Si) as a internal edge of Si. For eachv 2 Si, we de�ne the external neighbours and the internal neighbours of v tobe those vertices which are joined to v by external edges and internal edges,respectively.For each vertex v in a dense set Si, we de�ne Outv to be the set of externalneighbours of v, i.e. the neighbours of v outside of Si. Note that jOutvj � �4by the construction of Si. 7



Now we will partition each Si into � + 1 colour classes. We will notassign colours to them until later. As each Si is very dense, most of thecolour classes will have size 1. Unless Si is a clique, a few will have size 2.None will have size larger than 2.Lemma 2.3 For each 1 � i � `, we can �nd a matching Mi in Si such thateither (a) Mi is a maximum matching and jMij < 10��, or(b) jMij = 10��,and, in either case, there is no edge xy of Mi with both jN(x) \ Sij andjN(y) \ Sij less than �� 4p��.Proof Let A = fv 2 Si : jN(v) \ Sij < �� 4p��g. By Lemma 2.1,jAj < p��, and each v 2 A has degree at least 4p��� 5�� � 3p�� in Si.Consider a maximum matching M 0 of Si. If jM 0j < 10�� then settingMi = M 0 satis�es our requirements, for otherwise there exists an edge xy 2M 0 with x; y 2 A. x; y each must have at least 3p��� 20�� > 2 neighboursin Si not covered by M 0 which contradicts its maximality.If jM 0 j � 10�� and M 0 does not contain at least 10�� edges, none ofwhich have both endpoints in A, then jM 0j < 10��+ �jAj2 � < 11��. Further-more,M 0 must contain an edge xy with x; y 2 A. Again, x; y each must haveat least 3p���22�� > 2 neighbours in Si not covered by M 0, contradictingits maximality. Therefore, M 0 must have at least 10�� edges, none of whichhave both endpoints in A, and so we can take Mi to be 10�� of those edges.2We de�ne the colour classes Ci of Si to be the set of all pairs of verticeswhich form an edge inMi along with the set of all vertices not covered byMi.Thus, Si has jSij � jMij colour classes. It will be convenient to occasionallyalso refer to each vertex of H as a colour class of size 1.It is important to note the following:Fact: Each colour class of a dense set has at most (14 + 4p�)� externalneighbours. 8



Proof This follows easily from Lemma 2.3(b) and the fact that novertex in a dense set has more than �4 external neighbours. 2Lemma 2.4 For each i, �� 15�� � jCij � �+ 1.Proof That jCij � ��15�� is a simple corollary of Lemmas 2.1 and2.3 since jCij = jSij � jMij.If jCij > �+1 then since jCij = jSij�jMij, we have jMij < jSij�(�+1) <10��, and so Mi is a maximum matching. Consider the Tutte reduction ofSi, i.e. a partition of Si into sets X;U1; U2; : : : ; Ut, where jXj � jMij, each Ujis a component of Si�X, and at least jSij�2jMij+ jXj of these componentsare odd (see eg. [17]).Because jMij < 13 jSij, there is at least one Uj of size 1. In Si, the vertexin this component is adjacent to every other vertex in Si �X, and so jSij �jXj � � + 1. But jXj � jMij and so this contradicts the assumption thatjCij = jSij � jMij > �+ 1. 22.2 Ornery SetsIf jCij > �� log4�, then we say that Si is ornery. For each ornery set Si, wede�ne the kernel, Ki of Si to be the set of vertices in Si with at most log6�neighbours in G� Si.Lemma 2.5 For each ornery Si,(a) jSij < �+ log5�,(b) jSi �Kij < log5�, and(c) jE(Si; G � Si)j < �log7�.Proof If Si is ornery, then jSij � jMij = jCij > � � log4�, so byLemma 2.1(a) we have jMij < 3��, and so Mi is a maximum matching. Asin the proof of Lemma 2.4, we consider the Tutte reduction of Si. Note thatjMij = jXj+Ptj=1 b jUj j2 c. 9



Since Si is ornery, jSij � jMij > � � log4�. As before, there is atleast one Uj of size 1 and so again we have jSij � jXj � � + 1. Also,jSij � jMij = jSij � jXj �Pj b jUj j2 c. Therefore, Pj b jUjj2 c � log4�+ 1 and soPjUj j>1 d jUjj2 e � 2 log4�+ 2.Furthermore, � � log4� � jCij � Pj d jUjj2 e. Therefore the number ofsingleton components of Si �X is at least �� 3 log4�� 2 > �� 4 log4�.Thus, by the construction of Si, each member of X must be adjacent to atleast 23 of these singleton components, and so at least one of them is adjacentto at least 23 of X. Therefore, its degree is at least �� 4 log4�+ 23 jXj, andso jXj < 6 log4�.(a) now follows from the fact that the vertex in any singleton componenthas degree at least jSi �Xj � 1 in G, since it is adjacent to every vertex ina di�erent component Cj.(b) follows from the fact that each member of Si �X has degree at least�� log4� within Si, and so Si �X � Ki. (c) is a straightforward corollaryof (b). 2For each ornery Si, we de�ne Overused i to be the set of colours whichappear on at least � � �log10 � edges of E(Si; G � Si). When we eventuallycolour the vertices of Si, we will not use any colours from Overusedi. In orderto be able to do this, we need the following lemma.Lemma 2.6 For any ornery Si, jCij � ��Overusedi + 1.Proof Again, we consider the Tutte reduction of Si. Recall from theprevious proof that there are at least �� 4 log4� components Cj of size 1.Every colour in Overused i must appear on an edge of E(Si; G� Si) incidentto at least �� �log10 � � (jSij � (�� 4 log4�)) of these components, and byLemma 2.5(a) this number is at least �� �2log10� . Furthermore, by Lemma2.5(c), jOverusedij < 2 log7�, and so the number of these components forwhich at least one colour in Overusedi does not appear on an external edgefrom that component is at most �2 log10 ��2 log7� < ��4 log4�. Therefore,there is at least one singleton component which is incident to an external edgecoloured with each colour in Overusedi. Since the vertex of that componentis also adjacent to every other vertex in Si �X, we have � � jSij � jXj +1 + Overusedi, and the lemma follows from the fact that jXj � jMij and10



jCij = jSij � jMij. 2Corollary 2.7 For any ornery set Si; jOverusedij < log4�+ 1.Proof This follows from Lemma 2.6 and the fact that if Si is ornerythen jCij > �� log4�. 22.3 Modi�cations to GWhen colouring an ornery set Si, colours which appear on Outv for too manyvalues of v will cause di�culties. In order to prevent such di�culties, we willmake some modi�cations to G.For each ornery set Si, we de�ne Bigi = fv =2 Si : jN(v) \ Sij > �7=8g.Modi�cation 1: We add edges to make each Bigi a near clique. That is,for any pair of non-adjacent vertices x; y 2 Bigi, not both in the same denseset, we add the edge (x; y). This will ensure that no colour can appear on twovertices in Bigi, and so if a colour appears on Outv for several (say greaterthan 9�10 ) vertices v 2 Si, then that colour must appear on many vertices inG � Si � Bigi.A similar problem arises if a colour appears on too many edges out of Siin the initial edge-colouring.For each ornery Si, we de�ne Moderatei to be the set of colours whichappear on at least �= log� and at most ���= log10� external edges of Si.Modi�cation 2: We prevent each Bigi from receiving any colours inModeratei. That is, for each colour c 2 Moderatei, we add a new vertex toG, and add edges from it to every vertex in Bigi. We colour this vertex withcolour c.Through a slight abuse of notation, we continue to refer to the modi�edgraph as G. We refer to the new edges and vertices as arti�cial. Thesemodi�cations will be most important in Section 6.1. At the beginning ofSection 6.2 all arti�cial vertices and edges are removed, and G is returned toits original state.These modi�cations may alarm the reader, as they cause the maximumdegree of G to increase. However, this will not pose a problem. For one thing,11



the arti�cial edges will not be coloured in our total colouring. Furthermore,the degrees of the vertices increase just slightly, so little in fact, that we willstill be able to �nd a suitable �+ 1 colouring of G. Also every vertex whichwas originally sparse will still be nearly sparse.Lemma 2.8 (a) for each v 2 G, deg(v) � �+p�;(b) for each v in a dense set Si, jOutvj � �4 +p�;(c) for each v =2 Si, jN(v) \ Sij � 3�4 +p�;(d) for each colour class X 2 Si, the number of external edges fromX is at most �3 ;(e) for each dense set Si, the number of external edges from Si is atmost 5��2;(f) for each ornery Si, the number of external edges from Si is at most�log7�+p�;(g) for each ornery Si, and each v 2 Ki, jOutvj � log6�;(h) for each ornery Si, and each v =2 Bigi, jN(v) \ Sij � �7=8 +p�;(i) for each sparse vertex v, jE(N(v))j � (1 � �2)��2�.Proof(a) By Lemma 2.5(c), for each i, jBigij � �1=8 log7�. Furthermore, v liesin at most �1=8 di�erent Bigi's. Thus the number of arti�cal edges incidentto v is at most �1=4 log7� � p�.(b)-(f), (h),(i) follow in a similar manner. (g) follows from the fact thatif v 2 Ki then jOutvj � log6� before the modi�cations, so v =2 Bigj for anyj, and so there are no arti�cial edges incident to v. 22.4 The Neighbourhoods of the Sparse VerticesRecall that since H = V (G) � [ì=1Si, every vertex in H is sparse. Theremay also be sparse vertices in the dense sets. De�ne H 0 = fv 2 V (G) �H :jOutvj > 1104�g. Note that every vertex in H 0 is sparse, as by Lemma 2.8(e)there are at least jOutvj� 3�4 �5��2 � ��2 missing edges between the internalneighbours and the external neighbours of v.12



We say that two vertices are strongly non-adjacent if there are no edgesbetween their colour classes, and if they do not both lie in the same dense set.Thus two vertices are eligible to receive the same colour if they are stronglynon-adjacent. When we colour G, we will try to use several colours twice inthe neighbourhood of any v 2 H [ H 0 , and so we need to show that eachsuch vertex has several pairs of strongly non-adjacent neighbours.Lemma 2.9 For any v 2 H [H 0, N(v) has at least �80�2 pairs of stronglynon-adjacent neighbours.ProofCase 1: v 2 H 0 .v has at least 3�4 internal neighbours and 1104� external neighbours. Everyexternal edge from Si causes at most 4 pairs consisting of one internal andone external neighbour to not be strongly non-adjacent. Thus, by Lemma2.8(e), the number of such strongly non-adjacent pairs is at least 3�4 (10�4�)�20��2 > ��2.Case 2: v 2 H.Let wi = jN(v) \ Sij, and W = Pì=1 wi. By Lemma 2.8(i), there are atleast �4�2 pairs of non-adjacent vertices in N(v). If at least �8�2 of them lieentirely within H, then we are done. Otherwise, by Lemma 2.8(a), we musthave (� +p�)W > �8�2, and so W > �10�.If for any i, wi � p�, then as in Case 1, we have at least (p�4 � 20�)�2 >��2 strongly non-adjacent pairs.If wi < p�� for all i, then by Lemma 2.8(d), each v 2 Si is stronglynon-adjacent to at least � � wi � 2(�3 ) > �4 vertices of N(v) � Si, and soN(v) has at least 12W � �4 > �80�2 pairs of strongly nonadjacent vertices. 23 Colouring the Vertices - An OverviewRecall that we begin with an arbitrary proper � + 1 edge colouring of G,and our goal is to show that there exists a proper � + 1 vertex colouring ofG which does not conict with the edge colouring too much.Given the union of a proper edge colouring and a proper vertex colouringof G (where the two proper colourings possibly conict with each other), we13



de�ne the reject edges of G to be the set of edges which have the same colouras one of their endpoints. For any vertex v 2 V (G), we de�ne the rejectdegree of v to be the number of reject edges incident to v, not counting the(at most one) such edge with the same colour as v. We de�ne the rejectgraph to be the subgraph of G induced by the reject edges. Note that forany vertex v, the degree of v in the reject graph is at most the reject degreeof v plus 1.We will show that given any proper � + 1 edge colouring, we can �nd aproper �+1 vertex colouring such that the maximum reject degree is C�3.Thus, we will be able to recolour the edges in R using C � 1 new colours,providing a � + C total colouring of G.We will �nd our vertex colouring using a random colouring procedure. Wewill prove, using various tools of the probabilistic method, that with positiveprobability our procedure succeeds in �nding a satisfactory colouring. Ourprocedure consists of four main phases:Phase 1: An Initial Colouring.We assign an initial random colour to nearly every vertex. To do this,we assign to each vertex in H a uniformly random colour, and we assign arandom permutation of colours to the colour classes of each dense set.There will almost certainly be some conicts. We resolve some of themby uncolouring a vertex in H if it has a neighbour of the same colour. Allremaining conicts are between vertices in di�erent dense sets. We considerthese vertices to be only temporarily coloured, and we will recolour themduring Phase 3.We also uncolour vertices if they cause the reject degree of a neighbourto grow too high.Phase 2: Finishing the Dense Sets.We randomly colour all the vertices in dense sets which did not retain acolour in the �rst round. We ensure that the reject degree within the densesets does not grow too high.If a vertex receives the same colour as one of its external neighbours orone of its external edges, then we consider it to be temporarily coloured, andwe will recolour it during Phase 3. Note that this prevents the appearanceof any external reject edges.Phase 3: Recolouring the Temporarily Coloured Vertices.We recolour all the temporarily coloured vertices other than those in H 0.We divide them into three groups: 14



A) The kernels of the ornery sets.These require the most work. We will show that there are very few suchvertices to be recoloured, and that we will be able to swap the colour of eachsuch vertex with another vertex in the dense set. These other vertices willalways be available because of the very small number of external edges froman ornery set.B) Vertices in non-ornery dense sets with external degree at most log3�.We will ensure that there are at most 50 log3� such temporarily colouredvertices in any dense set. Since any non-ornery dense set has at most � �log4� colour classes, we will be able to recolour these vertices using thelog4� colours not yet used on that dense set.C) Vertices with external degree between log3� and 1104�We will see that each such vertex has enough colours appearing twice inits neighbourhood that we will be able to colour them in a greedy manner,always preventing the reject degrees from growing too high.Phase 4: Finishing the Sparse Vertices.At this point, all that remains is to colour the vertices of H which did notretain their colours in Phase 1, and the temporarily coloured vertices of H 0.We will show that each of these vertices has at least �(�) repeated coloursin its neighbourhood, and this will allow us to colour them all while keepingthe reject degrees low.During Phase i, we keep the reject degree of any vertex from increasingby more than Ci, i = 1; :::; 4. Again, we make no attempt to optimize eachCi. It su�ces to take C1 = 4000, C2 = 1700, C3 = 2000, and C4 = 1025, andso when the vertex colouring is completed, the reject degree of each vertexwill be at most C1 + C2 + C3 + C4 < C � 3 where C = 1026.In the following sections, we will elaborate on each of these phases, andprove that they can each be successfully completed.4 Phase 1: An Initial Colouring.In this phase we assign a random colour to each vertex of G, and thenuncolour some of the vertices when either conicts occur or the reject degreeis too high. In order to facilitate Phase 2, we choose a small random subset ofthe vertices in each dense set which we will not colour during this phase. Thiswill give us better control over the distribution of the uncoloured vertices at15



the end of the phase.We obtain our initial colouring through the following procedure:1. Assign a random colour to most vertices in G using the following pro-cedure.COL:(a) Assign to each v 2 H a colour chosen uniformly at random fromf1; : : : ;�+ 1g.(b) For each dense set Si, choose a set Ai of jCij colours uniformlyat random from f1; : : : ;� + 1g � Overusedi (where we considerOverusedi = ; if Si is not ornery). Then take uniformly randomsubsets C 0i � Ci and A0i � Ai, each of size jCij��, where  = 15000,and assign a uniformly random permutation of A0i to the colourclasses C 0i .2. If a vertex v 2 H receives the same colour as one of its neighbours,then we uncolour v.3. If a vertex v 2 G has reject degree at least C1, then we uncolour everyvertex w 2 N(v) such that w received the same colour as the edge(w; v).At this point we will have produced a partial colouring such that thereject degree is at most C1. This will not neccessarily be a proper colouringas there may be some vertices in the dense sets, which have the same colouras a neighbour in another dense set. We correct this as follows:If a vertex v 2 Si retains the same colour as a neighbour in Sj , j 6= i,then we consider v to be temporarily coloured. All other vertices in G whichretain their colours are considered to be truly coloured. The colour on a trulycoloured vertex is said to appear truly on that vertex. We de�ne Tempi to bethe set of temporarily coloured vertices of Si. For each 1 � a � 14�+p�,we de�ne Tempi(a) to be the subset of Tempi with external degrees at mosta. For each dense set Si, we de�neWi to be the set of uncoloured (i.e. neithertruly coloured nor temporarily coloured) colour classes of Si, and Ui to bethe unused colours from Ai. Note that jWij = jUij. In Phase 2, we will match16



the colours of Ui to Wi. For each v 2 Si, we de�ne the potential reject edgesincident to v, PR(v) to be the set of edges between v and Wi whose colouris in Ui.In order for the later stages to be successful, we need the following prop-erties to hold for our partial colouring:(P1.1) For each v 2 H [H 0 , N(v) has at least �34 � colours which appeartruly twice.(P1.2) For each v 2 G� (H [H 0) such that jOutvj � log3�, the numberof colours that appear truly in both Outv and N(v)\Si exceeds the numberof colours on external edges of v which do not appear truly on N(v) by atleast 1200jOutvj.(P1.3) For each i and a � log3�, jTempi(a)j � 2a.(P1.4) For each ornery Si, and each colour c, the number of vertices in Sihaving an external neighbour outside of Bigi with colour c is at most �31=32.(P1.5) For each i, jWij � �+ 1106�.(P1.6) For each i, and each v 2 Si, jPR(v)j � 32�.We prove that these properties all hold with positive probability via thefollowing sequence of lemmas.Lemma 4.1 Given any list of colour classes C = C1; :::; Ct, and a corre-sponding list of colours c1; :::; ct, the probability that Ci receives ci for eachi = 1; :::; t is at most ( 3�)t.Proof For each dense set Sj, let tj denote the size of C \ Cj , and lett0 = t�Pj�1 tj denote the number of classes in C which consist of a singlevertex in H.The probability that each Ci receives ci is at most� 1�+ 1�t0 �Yj�1 (jCjj � tj)!(jCj j)! :For any t, this product is maximized when each tj = jCjj or tj = 0 for allbut at most one value of j = j�. In this case, the product is at most� 1� + 1�t0 � (jCj� j � tj�)!(jCj�j)! � Yj 6=j� 1tj! <  e(1� 10�)�!t < � 3��t ;since jCij � �� 10�� by Lemma 2.3. 217



Next, we will show that with high probability, only a small proportion ofthe colour classes get uncoloured because of high reject degrees. Denote byR the set of classes uncoloured during Step 3 of Phase 1, and denote by R0the set of vertices with reject degree greater than C1 after Step 1 of Phase1. For each dense set Si, denote by Qi the set of colours which are removedfrom R \ Si during Step 3.Lemma 4.2 For any set X of at most 2� colour classes, the probability thatjX \ Rj > 11020 jXj is at most e��(jXj).Proof Consider any X0 � X, jX0j = 11020 jXj. We will bound theprobability that X0 � R.If X0 � R, then for each colour class x 2 X0, we can choose a particularrx 2 R0 such that x receives the colour appearing on an edge ex from x torx. If this is the case, then we let R00 = frxjx 2 X0g.We will �rst determine the probability that X0 � R and jR00j < 1100jX0j.There are at most (2�)jX0j choices for the vector (ex)x2X0. Clearly, thenumber of such vectors which yield jR00j < 1100jX0j is maximal when everyv 2 [x2X0x has the same neighbourhood, and so this number is at most� �1100 jX0j�( 2100jX0j)jX0j. Thus, by Lemma 4.1, the probability that X0 � R andjR00j < 1100jX0j is at most: �1100jX0j!� 2100 jX0j�jX0j � 3��jX0 j < � 15� 1020� 11020 jX0j ;since jX0j < �.Next, we determine the probability that X0 � R and jR00j � 1100jX0j.For each r 2 R00, we set dr to be C1 minus the number of reject edgesfrom r to X0. Note that each x 2 X0 can contribute at most 2 such edges,and so Pr2R00 dr � C1jR00j�2jX0j � ( C1100�2)jX0j. Each r 2 R00 must have atleast dr neighbours in G �X0 which contribute a reject edge incident withdr. Thus, the total number of such edges from G�X0 to R must be at least( C1100 � 2)jX0j. Each colour class can contribute at most 2 such edges and sothere must be at least ( C1200 � 1)jX0j colour classes contributing these edges.The number of choices for these colour classes, along with the edges theycontribute, is at most � �jR00j( C1200�1)jX0j�. Thus, by Lemma 4.1 the probability thatthere are this many reject edges from G �X0 to R00 is at most:18



 �jR00j( C1200 � 1)jX0j!� 3��( C1200�1)jX0j <  3eC1=200 � 1!( C1200�1)jX0j ;since jR00j � jX0j. Also, as before there are at most (2�)jX0j choices for thevector (ex)x2X0 of reject edges from X0 to R00. Therefore the probability thatX0 � R and jR00j � 1100jX0j is at most:(2�)jX0j � 3��jX0j  3eC1=200 � 1!( C1200�1)jX0j < � 15 � 1020� 11020 jX0j :Therefore, for any choice of X0, the probability that X0 � R is at most2 � 15�1020� 11020 jX0j, and so, setting � = 1=(5� 1020), the probability that jX \Rj > 11020 jXj is at most:2 jXj11020 jXj!� 15 � 1020� 11020 jXj � 2 ejXj5�jXj!5�jXj � �5�jXj = 2� e5�5�jXj : 2Lemma 4.3 For any dense set Si, and any set of colours U � f1; :::;�g,the probability that jU \Qij > 11020 jU j is at most e��(jXj).Proof For each X0 � Ci, jX0j = 11020 jU j, we bound the probabilitythat X0 � R, and X0 receives colours from U . The proof follows along thesame lines as the proof of Lemma 4.2, and we omit the details. 2Now we will prove that with positive probability our colouring satis�esthe desired properties.Lemma 4.4 With positive probability, the partial colouring produced by Phase1 satis�es properties (P1.1) - (P1.6).19



Proof We will use the Local Lemma. We de�ne the following events:A1:1(v) { De�ned for each v 2 H [H 0, this is the event that fewer than�34 � colours appear truly twice in N(v).A1:2(v) { De�ned for each vertex v in G� (H [H 0) with jOutvj � log3�,this is the event that the number of colours which appear truly in both Outvand N(v) \ Si does not exceed the number of colours on external edges of vwhich do not appear truly in N(v) by at least 1200jOutvj.A1:3(i; a) { De�ned for each 1 � i � ` and log3� � a � �, this is theevent that jTempi(a)j > 2a.A1:4(i; c) { De�ned for each i such that Si is ornery and each c 2f1; :::;� + 1g, this is the event that the number of vertices in Si havingan external neighbour outside of Bigi with colour c is more than �31=32.A1:5(i) { De�ned for each 1 � i � `, this is the event that jWij >�+ 1106�.A1:6(v) { De�ned for each v in any dense set Si, this is the event thatjPR(v)j > 32�.We wish to show that with positive probability none of these events hold.For each vertex v 2 G, de�ne N3(v) to be the set of vertices of distanceat most 3 from v, and set D(v) = N3(v) [ fSijSi \ N3(v) 6= ;g. For eachdense set Si, set D(Si) = [v2SiD(v). For each appropriate vertex v, A1:1(v)is independent of the colour assigned to all vertices in G � D(v), and theanalogous bound holds for each of the other events. Thus, for example,A1:1(v) is independent of A1:3(i; a) as long as D(v) \D(Si) = ;. It followsthat each event is independent of all but at most �9 other events. Thus, toapply the Local Lemma, it will su�ce to show that each event holds withprobability at most ��10.Pr(A1:1(v)) � ��10:To bound the probability of A1:1(v), we de�ne Z1 to be the number ofcolours which are retained by exactly two vertices in N(v), after Step 2. IfZ1 � �32 �, and fewer than �34 � > 11020� vertices in N(v) are uncolouredduring Step 3, then A1:1(v) does not hold. Thus, by Lemma 4.2, it is enoughto bound the probability that Z1 < �32 �.Since v 2 H [H 0, by Lemma 2.9, N(v) has at least �80�2 pairs of stronglynon-adjacent vertices x; y. For any particular such pair, denote by X, Y , the20



colour classes containing x; y respectively.By Lemma 2.4, for each Si, jC 0ij � (1 � 15� � )� > (1 � 2)�, andso x; y both receive a colour in Step 1 with probability at least (1 � 2)2.Also, given that they both receive a colour, they each receive the same colourwith probability at least 1�+1 , since they do not both lie in one dense set.It is straightforward to verify that the probability that no other vertex inN(v) [ N(X) [ N(Y ) receives that colour is at least 2 (the worst caseoccurs when the portion of N(v) [ N(X) [ N(Y ) which is outside of thedense sets that X and Y belong to lies entirely within 2 other dense sets).Thus Exp(Z1) � ( �80)�2(2(1�2)2�+1 ) � �3�.We now use Azuma's inequality to show that Z1 is concentrated aroundits mean. We will use the sort of argument described in Remark 1.4. Forthe sake of this proof, we consider choosing the colouring in Step 1 in anunusual manner. We �rst assign an initial colouring by applying COL. Nextwe recolour the vertices of N(v). In particular, for each x 2 N(v) in turn: ifx 2 H then we recolour x with a uniformly random colour from f1; :::;�+1g;if x is in some dense set Si, then we choose a uniformly random colourc0 2 f1; :::;� + 1g � Overusedi, and swap c0 in Si with the colour that xwas originally assigned. Note that the resulting random colouring is selectedfrom the same distribution as a colouring selected by a single application ofCOL, and so it is valid to generate the colouring in this manner.For each colour class w 2 G, w \ N(v) = ;, de�ne Xw � N(v) to bethe set of vertices in N(v) whose colour class is adjacent to w. Order thecolour classes of each dense set Si starting with those not intersectingN(v) innonincreasing order of jXwj, and �nishing with those classes which intersectN(v) ordered arbitrarily. We choose our random permutation in COL byassigning each class of C 0i in order a uniformly random colour from amongstthe remaining colours of A0i.In order to apply Azuma's Inequality, we must bound the e�ect that eachrandom choice can have on the conditional expected value of Z1. We splitthese random choices into 6 categories:(1) The colour assigned to a vertex w 2 H, with w =2 N(v):The choice of the colour assigned to w a�ects the conditional expectedvalue of Z1 (conditioned on the choices made thus far) by at most �jXwj� 1�2 ,as this is the maximumnumber of strongly nonadjacent pairs in N(v) that wis adjacent to, multiplied by the probability that both members of this pair21



receive that colour during recolouring.(2) The colour assigned to a colour class w =2 H, w \ N(v) = ;:Here, w 2 Ci for some dense set Si, and for any other colour class w0 2 Ciwhich has not yet been assigned a colour, we have jXw0 j � jXwj. Therefore,exchanging the colours on w and w0 will a�ect at most 2jXwj strongly adja-cent pairs within N(v) and so the choice of the colour assigned to w a�ectsthe conditional expected value of Z1 by at most 2�jXwj � 1�2 .(3) The colour initially assigned to a vertex w 2 H with w =2 N(v).This choice for w a�ects the conditional expectation of Z1 by at most 8.To see this, consider the e�ect of changing the initial colour on w. After allthe recolouring is completed, there will be at most two colour classes whosecolours are a�ected by this exchange. Each colour can contribute at most 4to Z1 (in the case that two colour classes of size 2 receive that colour), orsubtract at most 4 from Z1.(4) The colour initially assigned to a colour class w =2 H withw \ N(v) 6= ;.This choice for w a�ects the conditional expectation of Z1 by at most16. To see this, consider the e�ect of exchanging the initial colour on w withthat of some other colour class w0 in the same dense set, and reason as inthe previous case.(5) The colour with which a vertex w 2 H with w\N(v) 6= ; is recoloured.It is easy to see that this choice can a�ect Z1 by at most 2.(6) The colour with which a colour class w =2 H with w \ N(v) 6= ; isrecoloured.This choice w can a�ect Z1 by at most 8, since the new colour which wreceives can add or subtract at most 4 to/from Z1, and similarly for the othervertex involved in the swap.Now we must sum the squares of these values. Each x 2 N(v) lies in Xwfor at most 2� values of w. Thus, Pw jXwj � 2�2, and since jXwj � 2� foreach w, Pw �2�jXwj � 1�2�2 � 16�. Thus, denoting as usual the maximume�ect of the ith random choice on the conditional expected value of Z1 byci, we have P c2i � 16� + 16� + 4� = 36� where the �rst term comesfrom the choices in categories (1,2), the second term from those in (3,4) andthe �nal term from those in (5,6). Thus, it follows from Azuma's Inequality(see Remark 1.4) that Pr(Z1 � �32 �) � e��(�). Therefore, by Lemma 4.2.Pr(A1:1(v)) � e��(�) < ��10. 22



Pr(A1:2(v)) � ��10:We bound the probability of A1:2(v) in a similar manner. Let Y2 denotethe number of colours which appear truly in both Outv and N(v) \ Si, be-fore the uncolouring in Step 3. Let Z2 denote the number of colours whichappear on external edges from v, and appear truly on N(v) \ Si, before theuncolouring in Step 3. Note that if Y2 + Z2 � jOutvj(1 + 1100) and fewerthan 1200jOutvj vertices in N(v) are uncoloured because of reject degree, thenA1:2(v) does not hold.Because v =2 H 0 ; jOutvj � 1104�, and so jN(v) \ Sij � (1 � 1104 )�. ByLemma 2.8(c) and (d), for each x 2 Outv, the colour class x lies in has atmost 34� +p� neighbours in Si, and by Lemma 2.3, the number of colourclasses in C 0i of size 2 is at most 10��. Furthermore, by Lemma 2.8(e), atmost 500�� vertices in Si have external degree at least �100. Therefore, N(v)contains at least jOutvj((1� 1104 )�� (34�+p�)�10���500��) � �5 jOutvjpairs x; y of strongly non-adjacent vertices, with x 2 Outv, y 2 Si forming acolour class of size 1, and jOutyj < �100.Consider any such pair. By Corollary 2.7, for each dense set Sj, jOverusedj j <log4�+1, and so the probability that x; y receives the same colour is at least(�+1�2(log4�+1)=(�+1)2 > 1�+2 (the worse case is when x; y both belongto ornery sets with disjoint Overused sets). We also require that no othervertices inN+ = Outv[Outy[N(x) receive that colour. jN+j � �104+ �100+�,and for any other dense set Sj , jN+ \ Sjj � �104 + �100 + 34� + p� < 4�5 .Therefore, the probability that this colour doesn't appear anywhere else inN+ is at least (15)jN+j= 4�5 > 110. Therefore, Exp(Y2) � 150jOutvj, and it followsas in our analysis of Z1 that Pr(Y2 � 180jOutvj) � e��(jOutvj).Let Z 02 denote the number of colours appearing on the external edgesfrom v, which also are initially assigned to internal neighbours of v duringStep 1. By Lemma 2.3, N(v) intersects at least � � jOutvj � 10�� colourclasses of Ci. It is a straightforward application of the Cherno� Bound toverify that with su�ciently high probability it intersects at least (1�2)(��Outv � 10��) classes of C 0i, and that with probability at least 1 � e�(jOutv j),Z 02 � 1� jOutvj(1� 3)(��Outv � 10��). By Lemma 2.8(e), the number ofexternal edges from Si is at most 5��2, and it follows that the expected valueof the sum of the sizes of the external neighbourhoods of the colour classeson which these repeated colours appear is at most 5��2 � 1� � jOutvj, since23



Z 02 � jOutvj. A straightforward application of Azuma's Inequality showsthat this sum is highly concentrated and in particular that with probabilityat least 1� e��(jOutvj) this sum is at most 6��jOutvj.We now must bound the number of these colours which appear temporar-ily. Again, we can do this using the methods with which we bounded Z1. Ifthe average external degree of the colour classes assigned the repeated coloursis at most 6��, then the expected number of these colours which will appeartemporarily is at most 7�Z 02. We consider choosing the assignment of coloursfor Step 1 as we did in our analysis of eventA1:1. The choice of the colour forany colour class u =2 Ci a�ects this number by at most jN(u)\Sij. It followsthat Pr �Z2 < ( 1� jOutvj(1 � 4)(�� jOutvj � 10��)(1 � 8�)� < e��(jOutvj).Therefore, with probability at least 1� e��(jOutvj),Y2 + Z2 � � 180 + (1� 4)(1 � 8�)(1� 10� � jOutv j� )� jOutvj > 101100jOutvj. Itonly remains to be shown that with su�ciently high probability, few enoughof the relevant vertices in Si [ Outv are uncoloured during Step 3.By Lemma 4.3, with probability at least 1�e��(jOutvj), fewer than 11020 jOutvjcolour classes in Ci which receive colours appearing on the external edges fromv are uncoloured during Step 3. By Lemma 4.2, with probability at least1 � e��(jOutv j), fewer than 11020 jOutvj vertices in Outv are uncoloured duringStep 3. Lastly, we will bound the number of colour classes in Si which receivecolours also received in Outv, and which are uncoloured during Step 3.To do this, we consider choosing our inital colouring in Step 1 in anunusual manner. We �rst choose an initial colouring using a single applicationof COL. Let Z denote the set of colour classes of C 0i which receive the samecolour as a vertex in Outv. For each z 2 Z, we record the colour, c(z),that z receives. We then recolour all the colour classes in C 0i using a secondpermutation of U 0i . Finally, for each z 2 Z, we swap within Si the colour zrecieved in this second permutation, with c(z). Note that this generates aninitial colouring with the same distribution as an application of COL.Using the same analysis as that in Lemma 4.2, we can show that withprobability at least 1 � e��(jOutvj), before the swapping fewer than 11000jZjvertices in [z2Zz are adjacent via a reject edge to a vertex with reject degreeat least C12 . The swap creates at most 4jZj new reject edges, and so at most4jZj=C12 = 1250jZj more vertices in Si will be uncoloured in Step 3 becauseof the swap. Therefore, with probability at least 1 � e��(jOutvj), fewer than1250jZj + 11000jZj � 1200jOutvj colour classes in Si which receive colours also24



received in Outv, are uncoloured during Step 3.Therefore, Pr(A1:2(v)) � e��(jOutv j) � ��10, as jOutvj � log3�.Pr(A1:3(i; a)) � ��10:To bound the probability of A1:3(i; a), we de�ne Z3 to be the number ofvertices v 2 Si with external degree at most a, which recieve the same colouras an external neighbour during Step 1. Clearly Pr(A1:3(i; a)) � Pr(Z3 >2a).First, we will expose the colours assigned in Step 1 to G � Si. Then weexpose the choice of C 0i . Next, we choose the colours for the colour classes ofSi. To do this, we take a random permutation of f1; :::;�+ 1g �Overusediand assign the �rst jC 0ij colours, in order, to the classes of C 0i (which werepreviously ordered arbitrarily). Each colour class x 2 C 0i, recieves a uniformlyrandom colour from f1; :::;�+1g �Overusedi. Therefore Exp(Z3) � jSij �a=(� + 1� jOverusedij) < 1:5a, by Lemmas 2.1 and 2.6.Clearly, swapping two colours in the permutation changes Z3 by at most2. Therefore, by Azuma's Inequality (see Remark 1.4), Pr(Z3 > 2a) �e��(�) < ��10.Pr(A1:4(i; c)) � ��10:To bound the probability of A1:4(i; c), we de�ne Z4 to be the numberof vertices v 2 Si which have an external neighbour outside of Bigi whichreceives colour c during Step 1. Clearly Pr(A1:4(i; c)) � Pr(Z4 > �31=32).Each vertex in G receives a uniformly random colour from f1; :::;�+1g,or from f1; :::;�+1g�Overusedj in the case that the vertex is in an ornery setSj, and so the probability that v receives c is at most 1=(�+1�Overusedj) <2� . Therefore, Exp(Z4) � 2� Pv2G�(Si[Bigi) degSi(v) � 3 log7�, by Lemma2.8(f).Changing the colour of any vertex, or ipping the colour of any twovertices in G�(Si[Bigi) a�ects Z4 by at most 2�7=8. Therefore, by Azuma'sInequality (see Remark 1.4), Pr(Z4 > �31=32) � e��(�1=32= log7 �) < ��10.Pr(A1:5(i)) � ��10:Pr(A1:5(i)) � e��(�) < ��10 by Lemma 4.2.25



Pr(A1:6(v)) � ��10:Finally, we bound the probability of A1:6(v). For any v in some denseset Si, expose the choice of C 0i. There are at most ( +10�)� < 1:5� edgesfrom v to Ci � C 0i. Thus, the expected number of colours on these edgeswhich are not in A0i is at most  � 1:5�. A straightforward application ofthe Cherno� Bound yields that the probability of more than 22� of thesecolours not being in A0i is at most e��(�). The probability that more than11019� other colours will be added to PR(v) is at most the probability thatmore than 21019� classes will be uncoloured during Step 3, which by Lemma4.2, is at most e��(�). Therefore, Pr(A1:6(v)) � e��(�) < ��10. 25 Phase 2: Finishing the Dense Sets.At the beginning of this phase, each Si has a set of uncoloured colour classes,Wi, and a set of unused colours Ui. In this phase, we will randomly matchthe colours of Ui to the classes in Wi.For each Si, we will match the colours of Ui to the classesWi via a randompermutation. We will not be able to retain some of the colours because ofhigh reject degrees, and so we will have to perform several iterations of thisprocess. We will continue until the number of uncoloured classes is at mostlog3�, at which point we will simply assign a temporary colour to eachremaining vertex.Often when a class receives and retains a colour, one, or perhaps two,reject edges will be formed. The other endpoint of each of these edges willbecome critical. In each successive iteration, no class w may retain a colourappearing on an edge from a vertex of w to a critical vertex. We say sucha colour is forbidden for w, and we denote by F (w) the set of forbiddencolours. Furthermore, if in one iteration, at least C2 reject edges incidentto one vertex are formed, then none of the corresponding colour classes willretain their colour. Note that this implies that no vertex will have its rejectdegree increased by more than C2 throughout this phase.For the analysis of this phase, it will be important that any colour class26



w 2 W receives and retains each colour in U�F (w) with equal probability. Ifwe only uncolour because of reject degree, then this is not neccessarily true, asa class may be more likely to retain one colour than another. We compensatefor this as follows. If a class w receives a colour c, and does not lose itbecause of reject degrees, then we make a �nal random \ip", i.e. w losesc with probability �(w; c), where �(w; c) is chosen so that, conditional on wrecieving c, w retains c with probability �, where � is a constant independentof c; w. We will specify �; �(c; w) later.If any vertex receives a colour already assigned to one of its externalneighbours or edges, then we consider that vertex to be temporarily coloured.For each uncoloured vertex v, we de�ne T (v) to be the set of such colours.Phase 2 runs as follows:1. Initialize Wi;1 = Wi; Ui;1 = Ui, and for each w 2 Wi; F1(w) = ;.2. For k = 1 to k0 = d(3 log log�� log jWij � log 2)= log �e (where � is aconstant to be speci�ed later):(a) InitializeWi;k+1 = Wi;k; Ui;k+1 = Ui;k, and for eachw 2 Wi;k; F+(w) =;. (Remark: F+(w) is the set of colours newly forbidden tow during this iteration. It is incremented during the procedureCOLOUR.)(b) We apply the procedure ADJUSTSIZES to modify the set Fk(w)for each w 2 Wi;k, yielding new sets F �k (w) where jF �k (w)j =120jWi;kj for each w 2 Wi;k and j(F �k )�1(c)j = 120jWi;kj for eachc 2 Ui;k.(c) Choose a random permutation � : Wi;k ! Ui;k.(d) For each w 2 Wi;k, ifi. �(w) =2 F �k (w) andii. there is no neighbour x 2 Si of w such that the edge (x;w) iscoloured �(w), and there are at least C2� 1 other neighboursof x: w1; :::; wC2�1 2 Wi;k with each edge (x;wj) coloured�(wj).then with probability 1 � �(w;�(w)), COLOUR(w;�(w)).(e) For each w 2 Wi;k, Fk+1(w) := (Fk(w) [ F+(w)) \ Ui;k+127



3. We temporarily colour the classes of Wi;k0 with the colours of Ui;k0,thus setting Tempi := Tempi [Wi;k0 .We assign a colour c to a class w through the following procedure:COLOUR(w; c)1. Assign c to w.2. Wi;k+1 :=Wi;k+1 � w;Ui;k+1 := Ui;k+1 � c.3. for each vertex v 2 w, if c 2 T (v) then Tempi := Tempi [ fvg.4. for each vertex v 2 w, if an internal edge (u; v) has colour c, then foreach edge (u; v0) where v0 2 w0 2 Wi;k, add the colour of (u; v0) toF+(w0).Before presenting the procedure ADJUSTSIZES, we make an importantcomment on 2 technical steps. For ease of analysis, we will never allowFk(w) to be larger than 140jUi;kj, nor will we allow any colour to appear inmore than 140 jUi;kj sets Fk(w). If the number of forbidden colours for a class(or the number of classes for which a colour is forbidden) ever exceeds thisbound, then we remove some colours from some forbidden sets. The dangerhere is, of course, that if this happens then there is no guarantee that thereject degrees will be bounded. However, as we will show in Corollary 5.4,with su�ciently high probability this never happens, and so the reject degreeof each vertex increases by at most C2 during Phase 2.ADJUSTSIZES1. For each w 2 Wi;k, if jFk(w)j > 140jUi;kj then we replace Fk(w) by anarbitrary subset Q1 � Fk(w) of size 140jUi;kj.2. For each c 2 Ui;k, if jF�1(c)j > 140jUi;kj then we select an arbitrarysubset Q2 � F�1k (c) of size 140jUi;kj, and delete c from Fk(w) for each win F�1k (c)�Q2.3. We select for each w 2 Wi;k a superset F �(w) � F (w), F �(w) � Ui;k,of size 120jWi;kj such that j(F �)�1(c)j = 120 jWi;kj for each c 2 Ui;k.28



The only step of Phase 2 which is not straightforward is Step 3 of AD-JUSTSIZE. The fact that this step is always possible follows immediatelyfrom the following Lemma.Lemma 5.1 Let H be any bipartite graph on an n � n bipartition, withmaximum degree at most t � n9 . There exists a 2t-regular bipartite supergraphH 0 � H on the same vertex set.Proof Denote the parts of the bipartition by A;B. Consider thefollowing network ow problem de�ned on the graph H with every edgedirected from A to B. Each a 2 A has a supply of x(a) = 2t� degH(a), andeach b 2 B has a demand of y(b) = 2t � degH(b). (Note that Pa2A x(a) =Pb2B y(b).) The capacity of each edge is 1. Clearly, it su�ces to show thatthis problem has a solution.If not, then by the Max-ow Min-cut Theorem (see, for example, [7]) thereare partitions A = A1[A2; B = B1[B2 such that Pa2A1 x(a)�Pb2B1 y(b) >jEH(A1; B2)j.Now for each a; b, t � x(a); y(b) � 2t � 2n9 , and degH(a);degH(b) �n� t � 8n9 . Thus, if jB1j � 2n3 then jEH(A1; B2)j � 2n9 jA1j � Pa2A1 x(a). Asimilar situation arises if jA1j � n3 . Finally, if jA1j < n3 , and jB1j > 2n3 , thenPa2A1 x(a)�Pb2B1 y(b) < 0, and so there is a solution to the network owproblem, and hence H 0 exists. 2We also need the following properties to hold for the colouring producedby Phase 2:(P2.1) For each i and a � log3�, jTempi(a)j � 5a.(P2.2) For each ornery Si, and each colour c, the number of vertices inSi having an external neighbour outside of Bigi truly coloured c is at most2�31=32.During the kth iteration of the algorithm, for any colour class w 2 Wk,c 2 Uk, we de�ne R(w; c) to be the event that w receives c and there is someneighbour x 2 Si of w such that the edge (x;w) is coloured c, and thereare at least C2 � 1 other neighbours of x: w1; :::; wC2�1 2 Wi;k where eachvertex wj receives the colour of (x;wj). We de�ne Hk to be the history ofthe procedure, i.e. the set of choices made prior to the kth iteration.Lemma 5.2 For any k;Hk; w; c, Pr(R(w; c)jHk ^ (w receives c)) � 1400.29



Proof For any c, there are at most 2 choices for x. For either choice,let Z be the random variable denoting the number of edges (x;w0), withw0 2 Wi;k �w and where �(w0) is the colour appearing on (x;w0).There are at most 2jWi;kj edges from x to Wi;k, and each of them becomesa reject edge with probability at most jWi;kj�1. Therefore, Exp(Z) � 2, andso by Markov's Inequalilty (see, eg. [9]), Pr(Z � C2 � 1) � Exp(Z)C2�1 � 1800.Therefore Pr(R(w; c)jHk ^ (w receives c)) � 1400. 2We set � = 1200, and at the beginning of the kth iteration, we de�ne�(w; c) to be the unique solution to:Pr(R(w; c)jHk^(w receives c))+(1�Pr(R(w; c)jHk^(w receives c)))��(w; c) = �Note that �(w; c) is always non-negative by Lemma 5.2.Finally, we de�ne � = 120 + (1 � 120)� < 115. Note that � is both theprobability that a particular w 2 Wk remains in Wk+1 and the probabilitythat a particular c 2 Uk remains in Uk+1.For each vertex v 2 Si, we de�ne the potential reject colours, PRk(v), tobe the set of colours in Ui;k appearing on an edge from v to a vertex in acolour class of Wi;k, and we set PRk = maxv2SifPRk(v)g (recall PR1(v) =PR(v)). For each 1 � a � �, and 1 � k � k0, we denote by Tempi;k(a)the set of vertices v with jOutvj � a which in round k receive and retaina colour which is on an external edge or an external neighbour. Note that[kTempi;k(a) � Tempi(a).Lemma 5.3 With probability at least 1����(plog�), for every 1 � k � k0we have the following:(a) jjWi;k+1j � � jWi;kjj � log�3=4qjWi;kj(b) for each vertex v 2 Si, jPRk+1(v)j � � 2jPRk(v)j+log�3=4qjPRk(v)j,(c) for each vertex v 2 [w2Wi;kw, jT (v) \ Ui;k+1j � � jT (v) \ Ui;kj +log �3=4qjT (v)\ Ui;kj,(d) for each a � log3�, jTempi;k+1(a)j � maxjOutvj�a jT (v) \ Ui;kj +log �3=4qmaxjOutvj�a jT (v)\ Ui;kj,30



(e) for each w 2 Wi;k, jFk+1(w)j � � jFk(w)j+2�PRk+log�3=4qjFk(w)j+ PRk,(f) for each c 2 Ui;k, jF�1k+1(c)j � � jF�1k (c)j+2�PRk+log�3=4qjF�1k (w)j+ PRk.Proof (a) By the previous remarks, Exp(jWi;k+1j) = � jWi;kj. Wechoose our random permutation � by choosing an unassigned colour from Ui;kfor each w 2 Wi;k in sequence. Swapping two colours can a�ect jWi;k+1j by atmost 2C2, and so each choice a�ects Exp(jWi;k+1j) by at most 2C2. Thereforeby Azuma's Inequality, Pr(jjWi;k+1j � Exp(jWi;k+1j)j > log3=4�qjWi;kj) �e��(log3=2�). The analysis related to (b) to (f) is similar and we omit it,noting only that for each w 2 Wi;k, ExpjFk+1(w)j � � jFk(w)j + 2�PRk,as the �rst term counts the expected number of members of Fk(w) whichremain in Ui;k+1, and the second term counts (in fact greatly overcounts) theexpected number of members from F+ \ Ui;k+1 (and similarly for (f)).Each of our at most 6k0jSij bad events occurs with probability at moste� log3=2�, and so the probability that none of them occur is at least 1 ����(plog�). 2Corollary 5.4 With probability at least 1����(plog�), for each 0 � k � k0,(a) 12� kjWij � jWi;kj � 2� kjWij,(b) PRk � 6� 2kjWij,(c) for each vertex v 2 [w2Wkw, jT (v)\Ui;kj � 4� kjOutvj+ log1:75�,(d) for each w 2 Wi;k; jFk(w)j � 140jWi;kj,(e) for each c 2 Ui;k; jF�1k (c)j � 140jWi;kj.Proof Consider the sequence de�ned by x0 = jWij, x+k+1 = �xk +x13=14k , x�k+1 = �xk � x13=14k . If Lemma 5.3(a) holds for each k, and jWi;k0 j >log2� for each k0 < k, then x+k � jWi;kj � x�k . It is straightforward to verifythat for k � k0; 12� kx0 � xk � 2� kx0, and that jWi;k0j > log2�, thus proving(a).A similar argument, applying property (P1.6) and observing that jWij ��, yields PRk � 2� 2kPR0 � 2� 2k(3jWij), thus proving (b).31



(c) follows in the same manner, with the extra log1:75� term requiredsince the error term in Lemma 5.3(c) becomes more signi�cant when jT (v)\Ui;kj < log1:75�.If Lemma 5.3(a,e) and Corollary 5.4 (a,b,d) hold for each k, then recallingthat jUi;kj = jWi;kj, we have that for each w 2 Wi;k,jFk+1(w)jjUi;k+1j � � jFk(w)jjUi;k+1j + 12� (� 2kjUij)jUi;k+1j + log�q2jUi;kjjUi;k+1j� jFk(w)jjUi;kj 0@1 + log3=4�qUi;k+11A+ 24� k + log �q2jUi;kjjUi;k+1j� jFk(w)jjUi;kj + 25� k:Since F0(w) = ;, it follows thatjFk(w) \ Ui;kj � jUi;kj � k�1Xj=0 25(� )j< 150 jUi;kj:The same analysis applies to (e). 2Lemma 5.5 For each Si, property (P2.1) holds with probability at least 1���6Proof If Corollary 5.4 holds for each k, then the number of un-coloured colour classes at the end of Step 1 is at most 2� k0 jWij < 14 log3�.Thus, for any a � log3�, the number of vertices added to Tempi(a) in Step2 is at most 12a.By Lemma 5.3 and Corollary 5.4, with probability at least 1����(plog�),the number of vertices added to Tempi(a) during Step 1 is at most2a+ k0Xk=1 �4� ka+ log1:75�+ log:75�pa� < 2:25a+ log2:5� < 2:5a;32



and so the lemma follows from (P1.3). 2Lemma 5.6 For each Si, property (P2.2) holds with probability at least 1���6.Proof The proof is virtually identical to the proof of the bound onPr(A1:4(i; c)) in Lemma 4.4, after observing that for each colour c, at mostone vertex in each dense set receives c. 2Lemma 5.7 With positive probability, properties (P2.1) and (P2.2) hold forthe colouring produced by Phase 2, and the reject degree of each vertex in-creases by at most C2.Proof We de�ne the following events:A2:1(i; a) { De�ned for each 1 � i � ` and log3� � a � �, this is theevent that jTempi(a)j > 50a.A2:2(i; c) { De�ned for each i such that Si is ornery and c 2 f1; :::;�g, thisis the event that the number of vertices in Si having an external neighbouroutside of Bigi with colour c is more than 2�31=32.A2:3(i) { De�ned for each 1 � i � `, this is the event that for some1 � k � k0 and for some w 2 Wi or c 2 Ui, jFk(w)j at some point exceeds1800jWi;kj or jF�1k (c)j at some point exceeds 1800jWi;kj.If Si; Sj are at distance at least 3 from each other, then any two eventsA2:x1(i; y1); A2:x2(j; y2) are independent. Thus, each event is independent ofall but at most �3 other events. Furthermore, by Lemmas 5.5, 5.6, Corollary5.4 and properties (P1.1) and (P1.2), the probability of each event is lessthan ��6. Therefore, our lemma follows from the Local Lemma. 26 Phase 3: The Temporary ColoursIn this phase, we change the colours of all the temporarily coloured vertices,other than those in H 0 which we deal with in Phase 4. The �rst step is to33



deal with the kernels of the dense sets. After that, we process the dense setsS1; : : : ; S` in sequence. Within each dense set, we recolour the temporarilycoloured vertices in nondecreasing order of their external degrees. Thesevertices will then be considered to be truly coloured.6.1 Step 1: The Kernels of the Ornery Sets.For each ornery Si, we will recolour all vertices in Tempi \Ki, such that thefollowing properties hold.(Q3.1) We create no new external reject edges.(Q3.2) There are no adjacent v 2 Ki, u 2 Sj, j � i, with the same colour.(Q3.3) The reject degree of any vertex increases by at most 3.In order for future steps to succeed, we will also need a few more proper-ties.(P3.1) For each v 2 H [H 0 , N(v) has at least �38 � colours which appeartruly twice.(P3.2) For each v 2 G� (H [H 0) such that jOutvj � log3�, the numberof colours appearing truly twice in N(v) exceeds the number of colours onexternal edges of v which do not appear truly on N(v) by at least 1300jOutvj.For each ornery set Si, and each v 2 Tempi \Ki, we will swap the colourof v with that of a vertex u 2 Ki � Tempi. Of course, we must select ucarefully. Consider any colour class w of colour c which contains a vertex inTempi \Ki. We refer to w as a swapping class, and we de�ne Swappablew tobe the set of colour classes w0 2 Ci with the following properties:(a) jw0 j = 1,(b) the vertex contained in w0 lies in Ki,(c) the vertex contained in w0 does not lie in Tempi,(d) no vertices in Outw0 , nor any external edges from w0 have colourc, and(e) no vertices in Outw, nor any external edges from w have the colourcurrently assigned to w0 .Note that swapping the colour of any one swapping class w with that ofsome w0 2 Swappablew will preserve properties (Q3.1), (Q3.2) and (Q3.3).However, the cumulative e�ect of several such swaps might violate (Q3.2)34



and (Q3.3). We will deal with that concern later. First, we will establishthat for each swapping class w, Swappablew is large.Lemma 6.1 For each swapping class w, jSwappablewj � �log12 � .Proof We denote the colour of w by c.Let Ti be the set of colours appearing on Tempi \ Ki. Tempi \ Ki =Tempi(log6�), and so by Property (P2.1), jTempi\Kij < 5 log6�. Further-more, recall that Ti \Overusedi = ;.Claim 1: There are at least �2log10� truly coloured vertices in Ki whichare neither incident to any external edge of colour c, nor adjacent to anyvertex of G � Si of colour c.Proof:Case 1 c appears on at least �log� edges of E(Si; G� Si).Since c =2 Overusedi, c 2 Moderatei, and so by Modi�cation 2 of Section2.3, no vertex of Bigi has colour c. Thus, by Property (P2.2), at most2�31=32 vertices of Ki are adjacent to a node of colour c. Also, becausec =2 Overusedi, at most � � �log10� nodes of Ki are incident to an edge ofE(Si; G � Si) of colour c. By Lemma 2.5(b) and the fact that Si is ornery,jKij > ��log4��log5�, and by Property P(2.1) all but at most 5 log6� ofits elements are truly coloured. Thus we have at least �� log4�� log5��5 log6�� 2�31=32� (�� �log10� ) > �2 log10 � truly coloured vertices which areneither incident to any edge of E(Si; G�Si) nor any vertex of G�v of colourc. Case 2 c appears on fewer than �log� edges of E(Si; G � Si).At most one colour class within Bigi has colour c, and it has less than 3�4neighbours in Ki. The rest follows as in Case 1. 2Since Si is ornery, jCij � ��log4�, and by Lemma 2.5, jSij � �+log5�.Thus, the number of vertices in Si which do not lie in singleton colour classesis at most 3 log5�. Since w 2 Ki, jOutwj � log6� and so at most 2 log6�colour classes of Ci have a colour appearing on an external neighbour of wor an external edge from w. Also, again by Property (P2.1), jTempi \Kij �5 log6�.Therefore, by Claim 1, jSwappablewj � �2log10� � 3 log5� � 2 log6� �5 log6� � �log11 � . 235



Consider any swapping class w of colour c. We will select a subsetCandidatew � Swappablew of size 20, whose elements we refer to as can-didates. We will require the following condition:(Q3.4) There is some w0 2 Candidatew of colour c0 such that(a) w0 is not a candidate for any other swapping class,(b) w0 is not an external neighbour of any member of Candidatex forany swapping class x (in some other dense set), which also hascolour c.(c) w0 is not an external neighbour of any swapping class x, whichhas a candidate of colour c,(d) no candidate of any swapping class which has an external neigh-bour in w has colour c0, and(e) there is no vertex u, swapping class w1 of colour c1, and candidatew01 of w1 with colour c01, all in the same dense set as w and w0,and withi. the edge (u;w0) present and coloured c, and the edge (u;w01)present and coloured c1,ii. the edge (u;w0) present and coloured c, and an edge from uto w1 present and coloured c01,iii. an edge from u to w present and coloured c0, and the edge(u;w01) present and coloured c1, oriv. an edge from u to w0 present and coloured c0, and an edgefrom u to w01 present and coloured c01.For each swapping class w, we will swap the colour on w with that onthe class referred to in (Q3.4). (Q3.4) enforces properties (Q3.1), (Q3.2)and (Q3.3). We will require another condition on our candidates, to enforceproperties (P3.1) and (P3.2).To enforce (P3.1), it su�ces to bound the number of vertices in the neigh-bourhood of any v 2 H [ H 0 which are candidates of any swapping class.To enforce (P3.2), we make the following de�nitions. Consider any vertexv 2 G� (H[H 0) with jOutvj � log3�. Let C1(v) be the set of colours whicheach appear truly at least once in Outv, and truly at least once in N(v)\Si.Let D1(v) be the set of vertices in N(v) which are truly coloured with colours36



from C1(v). Let D2(v) be the set of vertices in N(v) which are truly colouredwith a colour appearing on some external edge from v. To enforce (P3.2) itsu�ces to bound the number of candidates in D(v) = D1(v)[D2(v) for eachsuch v. Thus, we require the following condition:(Q3.5)(a) for each vertex v 2 H [H 0, the number of candidates in N(v) isat most log20�, and(b) for each vertex v 2 G�(H[H 0 ) with jOutvj � log3�, the numberof candidates in D(v) is at most 1log� jOutvj.Note that if (Q3.5) holds, then by (P1.1) and (P1.3), (P3.1) and (P3.2)will both hold after completing all swaps. It only remains to be shown thatwe can in fact construct the sets Candidatew.Lemma 6.2 We can choose the sets Candidatew for all swappable classesw, such that (Q3.4) and (Q3.5) hold.Proof To choose Candidatew, we simply select 20 members of Swappablewat random. We will use the Local Lemma to prove that (Q3.4) and (Q3.5)hold for every swapping class w with positive probability.For each swapping class w, we de�ne A3:4(w) to be the event that (Q3.4)fails to hold for w, and for each vertex v, we de�ne A3:5(v) to be the eventthat (Q3.5) fails to hold for v. It is straightforward to verify that for anyswapping class w, A3:4(w) is independent of the set fA3:4(w1) : dist(w;w1) �6g[fA3:5(v) : dist(w; v) � 6g, and similarly for A3:5(v) for each v. Thus, itsu�ces to show that both Pr(A3:4(w)) and Pr(A3:5(v)) are less than ��8.First we will bound the probability of A3:5(v). Consider any vertex v.Let N1(v) be the union over all ornery Si such that jN(v) \ Sij � �2 log11 � ofN(v) \ Si, and let N2(v) be the union over all other ornery Si of N(v) \ Si.N1(v) meets at most 2 log11� ornery sets, and each contains at most5 log6�� 20 candidates. Therefore, N1(v) contains at most 200 log17� can-didates.To bound the number of candidates in N2(v), note that for any vertexu 2 N2(v), and any N 0 � N2(v)�fug, conditional on any partition of N 0 intocandidates and non-candidates, the probability that u is a candidate is atmost 5 log6��(20= �2 log11� ) � log18�� . Thus, the probability that the number37



of candidates in N2(v) exceeds 12 log19� is at most the probability that thebinomial variable BIN(jN2(v)j; log18 �� ) exceeds 12 log19� which is much lessthan ��8. Therefore, the probability that N(v) contains more than log19�candidates is less than ��8.The same analysis applies to the number of candidates in Outv, and also tothe number of candidates in D(v), by observing that since no colour appearsmore than twice in Si, we have jD(v)j � 5jOutvj, and so Pr(A3:5(v)) � ��8.To bound the probability of A3:4(w) for any swappable vertex w, we will�rst select the candidates of all swapping vertices other than w, and then wewill select the candidates for w.Suppose w 2 Ki and w has colour c. Before we select the candidatesfor w, we will consider the number of members of Swappablew which wouldmake bad candidates, i.e. those that would not meet the criteria of condition(Q3.4). They fall into the following �ve subsets of Swappablew.Bad1=fw0jw0 is a candidate for another swapping class w1gBad2=fw0jw0 is an external neighbour of a candidate for another swappingclass w1, of colour cgBad3=fw0jw0 is an external neighbour of another swapping class w1,which has a candidate of colour cgBad4=fw0jw0 has the same colour as a candidate for another swappingclass w1, which has an external neighbour in wgBad5=fw0j there is some vertex u, and another swapping class w1 ofcolour c1 and with candidate w01, violating condition (Q3.4)(e) gWe set Bad = [5i=1Badi. A3:4(w) is the event that each of the 20candidates chosen from Swappablew lies in Bad, and so Pr(A3:4(w)) �(jBadj=jSwappablewj)20. We will show that with probability at least 1���9,jBadj � log40�, and so, conditional on this bound holding,Pr(A3:4(w)) � 0@ log40��log11� 1A20 � ��9:Thus, Pr(A3:4(w)) � 2��9 � ��8.It only remains to bound the size of Bad.Since there are at most 5 log6� swapping classes in Si, each having 20candidates, we have jBad1j � 100 log6�.To bound the size of Bad2, we recall that by Lemma 2.5, there are atmost � log7� external edges from Si. Thus, we can apply similar analysis38



to that used to bound Pr(A3:5(v)) to show that with probability at least1 ���9, Si has at most log27� neighbours which are candidates. Becauseeach such candidate lies in the kernel of another ornery set, it has at mostlog6� neighbours in Si, and so we have Pr(jBad2j > log33�) � ��9.To bound the size of Bad3, we note that by Lemma 2.5, there are at most� log7� swapping classes in other ornery sets which have external neighboursin Si. Each of these picks a candidate of colour c with probability at most20= �log11� , and these choices are independent. Thus, Pr(jBad3j > log30�) �Pr(BIN(� log7�; 20 log11�=�) > log20�) � ��10.Since w has at most log7� external neighbours, jBad4j � 100 log7�.Since Si has at most 100 log6� candidates, jBad5j � 400 log6�.Therefore, with probability at least 1 � 2��10 > 1 � ��9, jBadj �100 log5� + log33� + log30� + 100 log7� + 400 log6� < log40�, and theresult follows. 26.2 Step 2: The Remaining Temporary Colours.At this point, we will remove the arti�cial edges and vertices added to G inSection 2.3, as they were needed only to enable us to recolour the temporaryvertices in the kernels of the ornery sets in Section 3.1. From this point on,it is important to note that the maximum degree in G has returned to �.The remaining temporarily coloured vertices are relatively straightfor-ward to deal with. We wish to colour all such vertices in G �H 0 (i.e. thosewith external degree at most 1104�) such that (i) we create no new externalreject edges, (ii) there are no adjacent v 2 Si, u 2 Sj , j < i, with the samecolour, and (iii) the reject degree of any vertex increases by at most C3 � 3.We deal with the sets Si in sequence.For any Si, we �rst recolour all the temporary vertices with externaldegree at most log3�. If there are any such vertices, then Si is not ornery,for otherwise they would lie in the kernelKi, and would already be recoloured.Furthermore, by Property (P2.1), jTempi(log3�)j � 5 log3�.Because Si is not ornery, it has at most �� log4� colour classes, and sothere are at least log4� colours not already used on the vertices of Si. Wewill use these new colours to recolour Tempi(log3�) in a greedy manner.39



We recolour the vertices one at a time. At each turn, the vertex, v, hasat most(a) 5 log3� new colours forbidden because they have already beenused in Si,(b) 2 log3� new colours forbidden because they appear on an externalneighbour, or an external edge of v, and(c) 5 log3�=(C3 � 3) new colours forbidden because of vertices in Siwhose reject degrees have already been increased by C3�3 duringStep 2.Since we have log4� colours to choose from, we will always be successful.We then recolour the rest of Tempi in non-decreasing order of externaldegree. At each turn, vertex v with external degree a will, by Property(P3.2), have at least 1300a colours available which do not appear on anyneighbours of v, or any external edges of v. By Property (P2.1), at most5a members of Tempi have been coloured thus far, and so there are at most5a=(C3 � 3) < 1300a colours forbidden because of vertices in Si whose rejectdegrees have already been increased by C3 � 3 during Step 2. Thus, we willalways be successful.7 Phase 4 - Finishing the Sparse VerticesAt this point, we have a partial proper colouring of G, such that:(a) every vertex in G� (H [H 0) is coloured,(b) the reject degree of each vertex is at most C1 + C2 + C3, and(c) for each uncoloured v, N(v) has at least �38 � colours which appeartruly twice (i.e. P(3.1) holds).In this, the �nal stage, we take advantage of (P3.1) to complete ourcolouring without increasing the reject degree of any vertex by more thanC4. 40



7.1 Step 1: Almost All the Rest.We colour nearly all of the remaining vertices through the following proce-dure. At the beginning of each iteration, vertices which do not have coloursare referred to as colourless. Each colourless vertex receives a colour. Some ofthese vertices retain their colours, while others are uncoloured. Any colour-less vertex which retains its colour throughout that iteration is then referredto as coloured. Such a vertex will never be uncoloured.Complete k1 = d3 log �=(� log(1 � 10�22))e iterations of the following:1. Assign to every colourless vertex, a colour chosen uniformly at randomfrom f1; :::;�+ 1g.2. For each u 2 V (G) and colourless x1; :::; xC4=2 2 N(u) such that eachxi receives the colour on the edge (u; xi) in this iteration, uncolourx1; :::; xC4=2.3. If any vertex, v, receives a colour which(a) appears on a coloured neighbour,(b) is assigned in this iteration to a colourless neighbour, or(c) is an element of Crit(v) (de�ned in Step 4).then uncolour v.4. If any vertex, u, is incident to at least C42 reject edges formed duringPhase 4, then that vertex is said to be critical, and for each uncolouredv 2 N(u), if jCrit(v)j � 11030�, then we add the colour of the edge(u; v) to Crit(v).Remark 7.1 If for every vertex v, the number of critical neighbours of vnever exceeds 11030�, then no vertex will have its reject degree increased bymore than C4. It is this case in which we are most interested, and we justifyfocussing on this case with Lemma 7.2.We will also require the following property to hold at the end of Step 1.(Q4.1) No vertex has more than p� uncoloured vertices within a distanceof 2. 41



Lemma 7.2 Consider any round i � 1, and any two disjoint sets X;Y ofcolourless vertices, with jXj; jY j � 11020�. Let Hi�1 denote the partial colour-ing produced through the �rst i � 1 iterations of Phase 4, and let Coli(X)denote the vector of colours received by the vertices of X during the ith it-eration. For any possible Hi�1;Coli(X), the probability that no vertex in Yretains its colour during round i, conditioned on Hi�1;Coli(X) and the eventthat every vertex in X retains its colour, is at most 2(1��)jY j, where � = 11022 .Proof Throughout this proof, all probabilities will be conditional onHi�1;Coli(X) and the event that every vertex in X retains its colour. Wemake reference to colours received and retained during round i.Claim: For any v =2 X, any colour c, any colourless vertices v1; :::; vt andany list of colours c1; :::; ct, the probability that v receives c, conditioned onthe event that vk receives ck for each 1 � k � t, is at most 2� . Furthermore,for each v, this probability is at least 1�+1 for all but at most 2jXj values ofc. Proof: We outline the main ideas behind the proof here. A detailed proofis straightforward, but somewhat tedious, and we omit the details.The conditioning on Hi�1 has no e�ect. Suppose X = fx1; :::; xjXjg. Foreach j = 1; :::; jXj, the colour that xj receives exposes at most one rejectedge (xj; uj), and if v 2 N(uj) then conditioning on the event that xi retainsthat colour somewhat decreases the probability that v receives the colour ofthe edge (uj; v), by an amount that is determined in part by v1; :::; vk andc1; :::; ck. Furthermore, if v 2 N(xi) then conditioning on the event thatxi retains its colour exposes that v does not receive the same colour as xi.Each of the at most 2jXj aforementioned colours are assigned to v with aprobability that is less than 1�+1 , perhaps as low as 0. Each of the remainingcolours is equally likely to be assigned to v, and so is selected with probabilityat least 1�+1 and at most 1=(� + 1� 2jXj) < 2=�. 2Let E1 be the event that at least �1� �332 � jY j members of Y are un-coloured during Step 3, and let E2 be the event that at least � �332 � jY j mem-bers of Y are uncoloured during Step 2. We will show that each of theseevents holds with small probability.To bound the probability of E1, we �rst expose the colours assigned toall uncoloured vertices outside of Y , and then expose the colours assigned to42



the vertices of Y , one at a time. For each vertex v, we say that a colour isforbidden if it lies in Crit(v) or if it appears on a coloured vertex in N(v). Wedenote A1 to be the number of vertices in Y which receive either a forbiddencolour or the same colour as a colourless neighbour outside of Y , A2 tobe the number of vertices in Y which receive a colour which has alreadybeen exposed on a previous member of Y , and A3 to be the number ofvertices which receive a colour which is not forbidden, and is not yet exposedas being assigned to a neighbour or a previous member of Y . Note thatevery vertex counted in A2 can cause at most one vertex counted in A3 tolose its colour, and so if E1 holds, then A2 � A3 � � �332 � jY j. ThereforePr(E1) � Pr �A2 � �232 jY j�+Pr �A3 � �216 jY j�.Every time we expose the colour assigned to a vertex in Y , the probabilitythat it is one which is already exposed on a previous member of Y is, byour Claim, at most 2jY j� , and the probability that it is neither forbidden, noralready exposed on a neighbour or another member of Y is by Property (P3.1)and our Claim, at least 1�+1 � �38 �� jY j � 11030�� 2jY j� > �312 . Therefore,Pr A3 � �216 jY j! � Pr BIN  jY j; �212 ! � �216 jY j!� (1� 3�)jY j;by the Cherno� Bound. Similarly, since 2jY j� < �350 , we havePr A2 � �232 jY j! � Pr BIN  jY j; �350 ! � �232 jY j!� (1� 3�)jY j:If jY j � 12p� then Pr(E1) � 2(1� 3�)jY j � (1� 2�)jY j.If �� 2� < jY j < 12p� then BIN(jY j; 2jY j� ) is asymptotic in distributionto a Poisson variable with mean less than 1, and so Pr �A2 � �232 jY j� <e=( �232 jY j)! < � jY j. If jY j � �� 2� then Pr(A2 � 1) < O(��1) < � jY j. There-fore again we have Pr(E1) � (1� 3�)jY j + � jY j � (1� 2�)jY j.To bound Pr(E2), we �rst note that our claim implies that that for anycolourless vertices v1; :::; vt and any list of colours c1; :::; ct, the probabilitythat vi receives ci for each 1 � i � t is at most � 2��t. Using this in place of43



Lemma 4.1, observing that �332 > 10�20 and following the same proof as thatof Lemma 4.2, we can show that Pr(E2) < ��1020�10�20jY j = � jY j. We omitthe details, noting only that the extremely small value of this probability isdue to the large value of C4!.Therefore, the conditional probability that no vertex in Y retains itscolour is at most (1 � 2�)jY j + � jY j < (1� �)jY j 2Lemma 7.3 For each vertex v, the probability that more than 11030� neigh-bours of v become critical is at most ��p�.Given any U = fu1; : : : ; u10�30�g � N(v), and any Tj = ftj;1; : : : ; tj;C42 g �N(uj), j = 1; : : : ; 10�30�, we consider the probability that for each j; k, tj;kreceives and retains cj;k, the colour of the edge (tj;k; uj). Note that eachvertex can contribute to the reject degree of at most one other vertex, andso we can assume that the sets Tj are disjoint.For each tj;k we choose an iteration ij;k, and we will bound the probabilitythat every tj;k receives and retains cj;k during iteration ij;k.For each iteration i, we de�ne Ii = ftj;k : ij;k = ig. During iterationi, the probability that each tj;k 2 Ii receives and retains cj;k is at mostthe probability that each tj;k receives cj;k which is � 1�+1�jIij. By Lemma7.2, conditional on this happenning, the probability that each t 2 [i0>iIi0 isuncoloured during round i is at most (1� �)j[i0>iIi0 j.Therefore, the probability that each vertex in U becomes critical is atmost �C42 !10�30� � 1��C42 10�30� �X1 (1� �)Pj;k(ij;k�1) � �C42 !��10�30� �  1�!C42 10�30�� � C4100 !��10�30� ;where the sum P1 is over all choices for the set of iterations ij;k. Therefore,Pr(Av) �  �10�30�!� C4100 !��10�30� < e��(�) < ��p�;44



since (C4=100)! > 1031. 2Remark 7.4 The reason that we chose such a high value for C4, is thatin our proof of Lemma 7.3 it is important that C4 be at least as high as afunction of �. By complicating our argument somewhat further, it is possibleto use a much smaller value of C4, which is not a function of �.Lemma 7.5 With positive probability, (Q4.1) holds, and the reject degree ofeach vertex increases by at most C4 � 1.Proof For each vertex v, de�ne A4:1(v) to be the event that thereare more than p� uncoloured vertices of distance at most 2 from v, andde�ne A4:2(v) to be the event that the number of critical neighbours of vever exceeds ��. Recall that ^vA4:2(v) implies that the reject degree of eachvertex increases by at most C4 � 1.By Lemma 7.2, noting that k0 was chosen so that (1 � �)k0 = ��3, wehave Pr(A4:1(v)) <  �2p�!(1 � �)k1p� < ��p�:Furthermore, by Lemma 7.3, Pr(A4:2(v)) < ��p�.It is straightforward to verify that each event is independent of all but atmost 2�4k1 other events, and the lemma follows by the Local Lemma. 27.2 Step 2: Finishing O� the Stragglers.For each uncoloured vertex v, we will select a subset Candidatev of the coloursnot yet appearing in N(v), whose elements we refer to as candidates. Werequire the following condition:(Q4.2) For each uncoloured v, there is some c 2 Candidatev, such that1. c is not a candiate for any neighbour of v, and2. there is no uncoloured vertex v0, candidate c0 of v0 and u 2 N(v)\N(v0),with the edge (u; v) coloured c and the edge (u; v0) coloured c0.45



We then assign each vertex v the colour referred to in (Q4.2). (Q4.2a)ensures that we will then have a proper vertex colouring of G, and (Q4.2b)ensures that the maximum reject degree will be at most C1+C2+C3+C4 <C�3. It only remains that we can select a suitable set of candidates for eachuncoloured vertex.Lemma 7.6 We can choose the sets Candidatev such that (Q4.2) holds.Proof Consider any uncoloured vertex v. By property (P3.1), thereare at least �38 � colours which do not appear on N(v). To choose Candidatev,we simply select 20 of these colours at random. De�ne A4:3(v) to be theevent that (Q4.2) does not hold for v. By property (Q4.1), Pr(A4:3(v)) ��40p�= �38 ��20 < ��9. Furthermore, each event is independent of all butat most �4 others. Therefore, by the Local Lemma, Pr(^vA4:3(v)) > 0. 28 The AftermathAnd �nally, we recolour the reject edges to get our total colouring of G.Proof of Theorem 1.1:Start with any � + 1 proper edge-colouring of G. Find a � + 1 vertexcolouring such that the reject degree of any vertex is at most C � 3, asguaranteed in Sections 3 { 7. The reject graph will have maximum degreeat most C � 2 and so by Vizing's Theorem, we can recolour the reject edgeswith C � 1 new colours, thus yielding a total colouring with at most �+ Ccolours. 29 AcknowledgementsWe would like to thank Colin McDiarmid for some fruitful discussions.46
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